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Abstract—Smart contracts are computerized transaction pro-
tocols built on top of blockchain networks. Users are charged
with fees, a.k.a. gas in Ethereum, when they create, deploy
or execute smart contracts. Since smart contracts may contain
vulnerabilities which may result in huge financial loss, developers
and smart contract compilers often insert codes for security
checks. The trouble is that those codes consume gas every time
they are executed. Many of the inserted codes are however
redundant. In this work, we present sOptimize, a tool that
optimizes smart contract gas consumption automatically without
compromising functionality or security. sOptimize works on
smart contract bytecode, statically identifies 3 kinds of code
patterns, and further removes them through verification-assisted
techniques. The resulting code is guaranteed to be equivalent
to the original one and can be directly deployed on blockchain.
We evaluate sOptimize on a collection of 1,152 real-world smart
contracts and show that it optimizes 43% of them, and the
reduction on gas consumption is about 2.0% while in deployment
and 1.2% in transactions, the amount can be as high as 954,201
gas units per contract.

Index Terms—smart contract, optimization, gas reduction

I. INTRODUCTION

Smart contracts, as an innovative blockchain application,
allow users to define complex protocols among distrusting
parties. These protocols are strictly complied with by stake-
holders through transactions, which invoke functions in smart
contracts. The transactions together with the blockchain state
are recorded by a large number of third-party entities, which
are called miners. In order to avoid issues of network abuse
and to sidestep the inevitable questions stemming from Turing
completeness [1], users are charged with fees to execute trans-
actions. The fees are calculated as gas price ∗ gas amount
in Ethereum. Gas price is the unit price of gas, which is
determined by the market (i.e., the miners). The average price
in year 2020 is around 60 gwei/unit (i.e., 1 gwei = 10−9 Ether).
Gas amount is the number of gas units consumed for any
computation or storage usage. It can be classified as amount
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that is consumed while in deployment and amount while in
transaction. In the former case, the cost is greatly affected by
the size of the smart contract, since the size decides the storage
needed. In the latter case, the cost depends on the operations
executed, which amounts to the computation needed for each
transaction. Every operation and every byte usage of storage
are associated with a specific amount of gas, which is defined
in [1].

Smart contracts are getting more and more popular in recent
years, i.e., the volume of transactions daily has increased from
7.1k in 2015 to 815k in 2020. At the same time, the gas
consumption for each transaction on average also increased
from 40K units to 70K [2]. Furthermore, after several high-
profile contracts were attacked, security is more relevant a
concern for contract developers than ever. A common practice
for preventing security problems is to adopt standardized ‘se-
cure’ libraries. Kondo et al. [3] report that the most frequently
reused code block in smart contracts is the SafeMath.sol
library from OpenZeppelin, which is a prominent project
devoted to creating secure libraries and template contracts for
smart contract developers.

These standardized secure libraries introduce run-time secu-
rity checking codes. For instance, once the SafeMath.sol
library is adopted, run-time checks for possible overflow are
introduced for every arithmetic operation in the contract. We
foresee that such a practice will become increasingly popular
(and rightfully so) and more and more run-time checks will
be introduced due to the security concerns. As a result, more
and more gas (in addition to time as well as energy) will be
‘wasted’ if some of these run-time checks are redundant. Ac-
cording to our analysis, there are as many as 43.3% contracts
which contain such redundant instructions. The challenge is
then: how can we reduce such gas consumption without
sacrificing the security?

Studies related to gas reduction in smart contracts have
only recently attracted some attention. In [4], Chen et al.
proposed GasReducer which identifies multiple anti-patterns
from the execution traces of smart contracts and replaces



1 c o n t r a c t m u l t i S e n d {
2 mapping ( address => u i n t ) setAmt ;
3 address [ ] bountyAddr ;
4 f u n c t i o n s e t D i s t r i b u t e T o k e n ( address [ ] memory

addrs , u i n t amt ) p u b l i c{
5 f o r ( u i n t i =0 ; i<a d d r s . l e n g t h ; i ++){
6 i f ( setAmt [ a d d r s [ i ] ] < 0)
7 bountyAddr . push ( a d d r s [ i ] ) ;
8 setAmt [ a d d r s [ i ] ] += amt ;
9 }

10 }
11 }

(a) Unreachable Branches in Loop
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Fig. 1: Optimization for Loop Contract

these patterns with optimized code to reduce gas consumption.
GASPER [5] applied symbolic execution to locate patterns
which often consume excessive gas. Later, Gasol [6] proposed
a cost model which allows users to infer the gas consumption
for transactions and ensures the contract free from out-of-gas
vulnerabilities. Users can optionally choose the optimization
mode which reduces the gas consumption associated to the
usage of storage only. On the other hand, Nagele et al.
proposed ebso [7] which leverages a constraint solver to
automatically find an optimized alternative (through exhaustive
search in a limited space) given certain code blocks. Albert et
al. [8] attempted to find an optimized replacement for a block
of code that produces the same result by applying Max-SMT
techniques. These works mainly focus on finding gas-optimal
instructions’ sequence for a block, instead of whether the block
is necessary in the first place.

In this work, we develop a toolkit called sOptimize which
aims to reduce gas consumption for Solidity smart contracts
by removing redundant run-time checks (which are typically
introduced due to security concerns). sOptimize applies static
analysis techniques (i.e., lazy annotation [9]) and loop in-
variant generation techniques [10] to verify whether a certain
code block is redundant or not before optimization is applied.
sOptimize focuses on optimizing 3 kinds of code blocks, i.e.,
dead node, redundant node, and partial-redundant node (refer
to Section III-C for detailed definitions).

To summarize, this paper makes the following contributions:
• We apply the verification techniques of loop invariant

learning and invariant inference to optimize 3 kinds of
nodes for smart contracts.

• We develop an end-to-end tool sOptimize to reduce the
gas cost for smart contracts.

• We evaluate the effectiveness of sOptimize with a set
of 1,152 smart contracts on private chain, and find that
on average 25,575 units (2%) of gas are reduced during
contract deployment and 954,201 units (1.2%) of gas can
be saved during transactions for a contract at most.

The rest of the paper is organized as follows. In Section II,
we illustrate how sOptimize works through two simple exam-
ples. In Section III, we present the details of our approach. In
Section IV, we discuss the evaluation results and Section V
reviews related works and lastly we conclude our work in
Section VI.

II. OVERVIEW

Given a smart contract, the goal of sOptimize is to optimize
its gas usage through detecting and eliminating redundant
codes, i.e., dead nodes, redundant nodes or partial-redundant
nodes on the premise of security. In this section, we illustrate
how sOptimize works through two examples. They are both
excerpted from real-world contracts but modified for illustra-
tion.

Example 1: In this example, we highlight how invariant
learning helps to identify opportunities for optimization. The
multiSend contract1 shown in Figure 1 attracts users to join
the contract as a bounty hunter by sending 0 Ether (i.e., unit of
cryptoconcurrency in Ethereum) to the contract owner. After-
wards, the contract owner allocates amt tokens to the users’
addresses by invoking function setDistributeToken.
This function first adds the user’s address into bountyAddr
if this user never joins the contract before, and then allocates
the token to the users at line 8. In this example, we aim to
identify and remove the unreachable branches which are never
executed and the condition which is an unnecessary check
caused by a mistake at line 6.

sOptimize first constructs the control flow graph (CFG) of
the setDistributeToken function as shown in Figure 1b.
In this figure, node root and node stop represent the entry and
exit of the function respectively, and other nodes represent the
corresponding statements in the contract. The predicates (in
blue) associated with the nodes are node invariants, and the
predicates in red are assertions. In this example, assertions are
introduced by the Solidity compiler for boundary check before
the array is accessed every time (e.g., i < addrs.length for
addrs array). We depict all the assertions in red at nodes
n6 0, n7 0 and n8 0 in Figure 1b. They are all derived from
the array addrs[] at line 6, 7 and 8 in Figure 1a. Solidity
first checks whether the index i is in the range of the array
length at node n6 0, and then checks whether the condition
setAmt[addrs[i]] < 0 is satisfied at node n6. Similar checks
are in place also for node n7 0 and node n8 0.

Next, sOptimize infers the invariant for each node using
a combination of program inference, lazy annotation and
loop invariant learning techniques. Initially, the invariant for
each node is true. sOptimize iteratively and monotonically

1contract address: 0x2deF52220E91EB42B2CaF8005F7f671dC692Bf89



1 library SafeMath {
2 function mul(uint256 a, uint256 b) internal pure

returns (uint256){
3 if (a == 0)
4 return 0;
5 uint256 c = a * b;
6 assert(c / a == b);
7 return c; }
8 function div(uint256 a, uint256 b) internal pure

returns (uint256){
9 uint256 c = a / b;

10 return c; }
11 }
12 contract ethBank{
13 using SafeMath for *;
14 address public owner;
15 uint rate;
16 uint constant ethWei = 1 ether;
17
18 modifier onlyOwner{require(msg.sender == owner); _

;}
19
20 function() payable external{
21 require (msg.value == msg.value.div(ethWei).mul

(ethWei), "invalid msg value"); }
22 function withdrawForUser(address payable _address,

uint amount) onlyOwner public{
23 require(msg.sender == owner, "only owner ...");
24 uint pay = rate.mul(amount);
25 _address.transfer(pay); }
26 }

(a) Source Code

Fig. 2: Optimization for Common Contract

strengthens the node invariants step by step. To infer the
invariant for the loop-head node (i.e., a node representing the
start of a loop), sOptimize invokes a loop invariant generator
to learn an invariant, which is subsequently propagated to the
nodes in and after the loop. Take node n5 as an example, it
is the head node of the loop started with an edge from node
root and ended with an edge to stop in Figure 1b. sOptimize
invokes the loop invariant generator for invariant inference.
During the learning process, sOptimize first generates random
valuations of all relevant variables (including i, addrs.length,
bountyAddr.length and amt), and then categorizes the val-
uations according to whether any of the assertions is violated
or not. Afterwards, sOptimize invokes a learner to generate a
candidate invariant which is then validated by a validator. If
the candidate invariant is not valid, a counterexample in the
form of variable valuations is generated and used to learn a
new candidate invariant until a valid invariant is generated. In
Figure 1b, the learnt invariant is true, that means the assertion
i < addrs.length is always satisfied at node n6 0 as well
as node n7 0 and n8 0 in the loop. Note that there is an
implicit condition in this contract which is that any element
in setAmt is non-negative, since the element is defined as
uint at line 2. Thus the invariant of node n6 is strengthened
as true ∧ i < addrs.length ∧ setAmt[addrs[i]] >= 0, node
n7 0 is true ∧ i < addrs.length ∧ setAmt[addrs[i]] >=
0∧ setAmt[addrs[i]] < 0 (equivalent to false), and node n7
is false. Note that, we simplify the invariant of nodes n8 0

and n8 to be true ∧ i < addrs.length.

Once the invariant of each node is inferred (and a fixed-

point has been reached after propagation), sOptimize checks
whether there exists potential optimization nodes based on the
CFG. In this example, nodes n7 0 and n7 are dead nodes and
n6 0, n6 and n8 0 are all redundant nodes. They are thus
removed and a new edge is generated to link node n5 with
node n8 directly as shown in Figure 1c, i.e., codes at lines 6
and 7 are removed after optimization.

Example 2: In this example, we show how different nodes
are optimized at bytecode level. As shown in Figure 2a,
contract ethBank2 receives deposit of Ethers from the
fallback function, and allows the owner only to transfer
Ethers out to addresses specified by the owner in function
withdrawForUser. The modifier onlyOwner at line 17
restricts that only the user can access a function when it is
used.

All three kinds of nodes which are subject to optimization
are identified by sOptimize in this contract. The nodes for line
21 after compilation are opcode blocks labelled with 6, 7 and
8 shown at Figure 2c. The node labelled with 6 is identified
as a redundant node; and the node 7 is an dead node. Since
the modifier onlyOwner functioning at line 20 allows only
the owner to proceed, the require statement at line 21 must be
satisfied. The corresponding checking node labelled 6 always
jumps to node 8. As a result, node 7 is never reached. Thus,
we can redirect the edge to line 316 directly from line 24c
and remove all the opcodes in node 6 and 7. A total of 108
bytes are removed, which saves 28,944 units of gas during
deployment (i.e., 68 per byte for transaction and 200 per byte

2contract address: 0xf3fa62dd25504a7b05300a1ddd56a22a100fd4df



for run-time code deposit), and 269 units of gas for each
transaction afterwards.

This example also contains a partial-redundant node. The
assert statement at line 6 from the SafeMath library is
redundant when it is invoked from the fallback function at
line 19 in Figure 2a. The corresponding bytecode sequence is
at line 1b2 to line 01ca in Figure 2b. It prevents potential
overflow problem caused by the multiplication at line 5.
However, overflow is impossible in such a case since ethWei
is a constant. That means c/a = b is always true. We cannot
remove this statement directly, because it still works for other
cases like the multiplication at line 22. sOptimize generates a
new copy of function mul represented by node 9 in Figure 2d,
this code snippet is appended in the end of the optimized
bytecode. Part a and b are optimized from part 1 and part
5. All the other opcodes between line 1ba and line 1cb will
not be executed in such transactions. Afterwards, the fallback
function is directed to this new bytecode sequence to avoid
the redundant checks. Note that, this copy introduces 42 bytes
new codes in this example which cause an increase of 11,256
gas units during deployment and at the same time reduce 46
units of gas for each transaction subsequently. It means this
optimization is profitable if the transaction volume is larger
than 250.

III. OUR APPROACH

In this section, we present our approach in detail. The
overall approach is shown in Algorithm 1. Given a smart
contract C with M functions, we first construct a CFG for
each function (line 1). Then, we update node invariants in
CFGf i with function updateInv(CFGf i) at line 3 and
initiate the optimized CFG OPf i with the updated CFGf i

at line 4. set(N) is the set of all the nodes in the CFG, which
is defined in Definition 1. Next, we examine every node in the
CFG to systematically identify and optimize dead nodes and
redundant nodes including partial-redundant nodes from line
5 to line 10. Lastly, we reorganize the bytecode sequences of
the optimized CFG OPf i to output the bytecode sequence
through function reOrganizeBytecode(OPf i) at line 12. In
the following, we present details of the main steps.

A. CFG Construction

In this step, we systematically construct the CFG of each
function in the smart contract. Given the bytecode of a
smart contract, the CFG is constructed based on the compiled
Ethereum Virtual Machine (EVM) opcode. We omit the defi-
nitions for the opcodes, readers can refer to Ethereum yellow
paper [1] for further details. A function of a smart contract
is composed of a sequence of opcodes. Typically the opcodes
are organized into basic blocks, i.e., a sequence of opcodes
which do not contain a branching opcode except the last one
or a starting opcode except the first one.

Definition 1: Given a function of a smart contract, its CFG
is a 4-element tuple (N, root, E, I) where N is a set of nodes
representing basic blocks of opcodes and these opcodes have
the same node label; root ∈ N is the entry node; E ⊆ N×N

Algorithm 1: Overall Optimization Algorithm

1 {CFGf i} ← CFG construct(C);
2 for CFGf i do
3 CFGf i ← updateInv(CFGf i);
4 OPf i ← CFGf i;
5 for node n ∈ set(N) do
6 if I(n) = false then
7 OPf i ←

rmDeadNode(CFGf i, OPf i, n);
8 end
9 OPf i ← opONode(OPf i, n);

10 end
11 end
12 reOrganizeBytecode({OPf i});

is a set of edges; I : N → Pred is a function that labels each
node with an invariant.

Constructing the CFG in practice is non-trivial. That is,
given the bytecode of a smart contract C, we first disassemble
the bytecode into a sequence of EVM opcode instructions.
Then, to identify the edges of the CFG, we must figure out the
target of JUMP and JUMPI instructions, which may depend on
what is on the stack. Thus, we simulate the stack completely in
our approach, i.e., by executing those stack related operations
precisely. At the same time, some nodes may be visited
multiple times due to different control flows, like the nodes in
the library in Figure 2a. Such nodes are duplicated in the CFG
construction. Readers are referred to [11], [12] for details on
how the CFG is constructed.

B. Invariant Generation

We strengthen the invariant for each node in the CFG at
this step. We first define what is an invariant based on the
semantics of the function.

Definition 2 (Symbolic Semantics): Let (N, root, E, I) be
a function of a smart contract, its (symbolic) semantics is
defined as a labeled transition system (S, init,→s, I), where
S is a set of symbolic states, and each state s is a pair
(n, pc, V ) where n ∈ N , pc is the program counter of opcodes
in a node and V is a symbolic valuation function which maps
each storage variable to an expression constituted of symbolic
variables; init ∈ S is the initial state composed of root and
the initial valuation of pc and the storage variables (which are
all symbolic);→s⊆ S×S is the transition relation conforming
to the symbolic semantic rules.

A few execution rules are shown in Figure 3 to make this
paper self-contained. Readers can refer to [13] for the other
rules. Here, rule SSTORE updates the position p with v in
V ′, and moves pc to the next opcode. Rule JUMPI moves
pc to a new location that depends on the symbolic valuation V
and JUMPI condition cond. If V satisfies the condition cond,
pc will be moved to the new target T , and correspondingly,
n is updated to n′. Otherwise, pc is moved to the succeeding
opcode, which is pc+ 1.



SSTORE (p, v)
V ′ = V [storage(p) 7→ v]

(n, pc, V ) −→s (n, pc+ 1, V ′)

JUMPI (cond,T)-1
V |= cond

(n, pc, V ) −→s (n′, T, V )

JUMPI (cond,T)-2
V 6|= cond

(n, pc, V ) −→s (n′, pc+ 1, V )

Fig. 3: Instruction Execution rules

A (symbolic) trace tr is a sequence of symbolic states in the
form of tr = 〈s0, s1, . . . , sk+1〉, where s0 = init and si →s

si+1 for all 0 ≤ i ≤ k. We write last(tr) to denote the last
state of the trace, i.e., last(tr) = sk+1. The set of symbolic
traces of a function F , written as Trace(F ), is the set of
all traces which can be generated according to the symbolic
semantics.

Definition 3 (Node Invariant): Given a smart contract func-
tion F = (N, root, E, I), a predicate φ is an invariant at node
n, denoted as I(n) = φ, if and only if last(tr) |= φ for all
tr ∈ Trace(F ) s.t. π(last(tr)) = n.

Note that v |= φ means φ is satisfied by the variable
valuation v. Intuitively, the above definition of state φ is an
invariant at node n if and only if φ is satisfied by all the
traces leading to node n, i.e., when the trace reaches n, its
variable valuation satisfies φ. Function π maps the state to the
corresponding node n.

Definition 4 (Strongest Postcondition): Given an opcode op
and a precondition φ, the strongest postcondition sp(c, φ) is
defined as:
sp(SSTORE(p, v), φ) =

∃y, φ[y/storage[p]] ∧ storage[p] = v
sp(op, φ) = φ ∧ b if op = JUMPI(b)
sp(op, φ) = φ if op = JUMP or SLOAD(x)

In the above definition, the fresh variable y represents
the previous values of storage[p] in the strongest postcon-
dition for command SSTORE. For the branching command
JUMPI , the strongest condition is the conjunction of φ and
condition b. Since there is no condition introduced for JUMP
and SLOAD, the strongest postcondition keeps the same.
Worthing to say, SLOAD may introduce new predicate when
the position x is first visited, however, the content must be
in other forms integrated into the strongest postcondition, like
assigning to other variables or acting as a part of the branch
condition. Thus, it keeps the same here. All the values in the
storage including global storage, memory storage and stack
storage [14] are in the form of static single assignment. Thus,
they are all manifest in the states which reach the fix point
finally.

Algorithm 2 shows details on how to update the invariant
of a node n based on the strongest postcondition. Let Ψ be
a predicate which is initially false. We have the strongest
postcondition of each node m linking to node n, which is
φ(m). Their disjunction is a constraint which must be satisfied

Algorithm 2: inferI(F, n)

1 Ψ← false;
2 for (m,n) ∈ E do
3 Ψ← Ψ ∨ φ(m);
4 end
5 I(n)← I(n) ∧Ψ

Algorithm 3: opNodes(OP (F ), n)

1 if n ∈ {b?n1 : n2} then
2 if I(n)⇒ b then
3 OP (F )← lkNodes(OP (F ), n, n1));
4 else if I(n)⇒ ¬b then
5 OP (F )← lkNodes(OP (F ), n, n2));
6 end
7 end

Algorithm 4: updateInv(CFG(F ))

1 I ← init(true);
2 I ′ ← ∅;
3 while I ′ 6= I do
4 I ′ ← I;
5 for n ∈ N do
6 if n is loop head then
7 I(n)← learnI(CFG(F ), n);
8 else
9 I(n)← inferI(CFG(F ), n);

10 end
11 end
12 end

by the invariant at node n. Intuitively, this is because n can
only be reached via one of its parents. Lastly, the invariant of
node n is monotonically strengthened by the conjunction of
I(n) and Ψ at line 5.

Then, how do we generate non-trivial invariants for each
node? As shown in Algorithm 4, we adopt two ways to
generate the invariants depending on whether a node is a
head-node for a loop or not. We distinguish head nodes of
certain loops (i.e., a node representing the start of a loop
statement) and apply a different approach to infer invariants
for such nodes. If the node is not the head of a loop, it is
inferred by function inferI(F, n). If the node is the head
of a loop, we generate the loop invariant through a “guess
and check” approach, which is adopted from [10]. Intuitively,
the loop invariant learning function learnI(F, n) is composed
of three phases, i.e., data labeling, learning, and validation.
sOptimize executes the loop part with the concrete variable
valuations and labels these valuations as negative or positive
samples against assertions. Note that in addition to assertions
provided by users or added by the compiler, we automatically
instrument the negation of the condition before every branch



node as the assertion (so that we can check the feasibility of
each branch). A concrete variable valuation is labeled positive
if no assertion is violated during the execution; otherwise, it
is labeled negative. Based on the labelled samples, sOptimize
learns an invariant using a classification algorithm (such as
SVM [15] and the decision tree [16]). The learnt candidate
invariant is then validated by the validator by checking whether
the invariant still holds after one iteration of the loop through
symbolic execution. If the candidate invariant fails the valida-
tion, i.e., there exists a concrete variable valuation (hereafter a
counterexample) which satisfies the candidate invariant before
the loop and fails the candidate invariant after one iteration,
the counterexample is added into sample set to learn a new
invariant. Once validated, the candidate invariant is returned
as the output of function learnI(F, n). As the example shown
in Figure 1a, sOptimize learns loop invariant true against
the compiler-inserted assertion (i < addrs.length), and it is
successfully validated by the validator. Since learning loop
invariant is not the main contribution of this work, we refer
interested readers to [10] for further details.

C. Optimization

With the definition above, we present how to optimize the
contracts on dead node, redundant node and partial-redundant
node.

1) Dead node.: Dead code refers to code which can never
be executed at run-time [17]. In our labelled CFG, a node is
dead if the node invariant I(n) is evaluated to be false, that
is all symbolic traces reaching the node are infeasible.

Example 3: As shown in Figure 2c, the invariant of node 7
which corresponds to require statement at line 21 in Figure 2a,
is false, thus it is a dead node. We can remove this node from
the CFG directly without affecting any feasible traces.

2) Redundant Node.: A computation is redundant if it has
been computed previously and its result is guaranteed to be
available at that point [18]. Redundant node is a kind of
redundant code. Intuitively, a node is redundant if its invariant
can successfully imply its branch condition or the negation of
the branch condition in the labelled CFG.

Example 4: For instance, in Figure 2c, the node 6 is a redun-
dant node, whose node invariant is (msg.sender = owner)
which is due to the modifier in Figure 2a, and the branch
condition is also (msg.sender = owner) which maps to line
21 in Figure 2a. Thus, the implication always succeeds, this
node always goes to node 8. After invoking function lkNodes,
the redundant node is removed from the CFG and the tag at
line 24c is updated to tag8 from tag7 to form the new edge.

3) Partial-redundant Node.: An expression is partially re-
dundant at program point p if it is redundant along some, but
not all, paths that reach p [19]. Identifying partial-redundant
node is simple, since we have marked the node as duplicate
when constructing CFG if a node is linked by different control
flows. Thus, if a node is redundant and also marked as
duplicate, it must be a partial-redundant node.

Example 5: As the example shown in Figure 2b, sOptimize
discovers node 2 and node 3 are both partial-redundant nodes,

which maps to the assert statement at line 6 in function
mul invoked by statement at line 19 in Figure 2a. Since
the assertion never fails in such a case because the variable
ethWei is a constant, the node always goes from node 2
through node 3 to node 4. Function lkNodes modifies nodes
2, 3 and 4 and forms node 9 as shown in Figure 2d, which only
keeps the necessary opcodes part 1 and part 5 (in blue box) in
Figure 2b. Obviously, this optimization suffers overhead (i.e.,
extra code is introduced), and we only allow single copy of
nodes in our implementation. Too much copies may introduce
too many codes and increase the gas cost.

We illustrate the optimization of redundant nodes and
partial-redundant nodes in Algorithm 3. If node n is a branch-
ing node, sOptimize will evaluate whether the node invariant
I(n) can imply the branch condition. If the implication suc-
ceeds, that means the edge always starts from node n and stops
at node n1, sOptimize invokes function lkNodes to update the
target of the parent node of n to link it to node n1 directly, and
remove the current node n on the CFG. Otherwise, sOptimize
will further evaluate whether the node invariant I(n) can imply
the negation of the branch condition and links the parent node
of n to node n2 if the implication succeeds.

D. Bytecode Reorganization

To make the optimized contract work as a valid EVM
contract, we need to reorganize the control flow in the new
bytecode sequence. We have marked the opcode which deter-
mines the control flow and the corresponding tag sequence for
each node when constructing the CFG.

Example 6: As shown in Figure 2c, the target for line 24c
is 0x254, which is labelled with tag7, we also link line 2a5
with 0x316 by tag8 in the same way before optimization. After
removing the redundant codes, we update the tag at line 24c
with tag8, and further recalculate the target addresses for all
the PUSH opcodes. Finally, sOptimize outputs the reorganized
bytecode.

E. Soundness of Overall Algorithm

The soundness of overall algorithm (i.e., Algorithm 1) is
established on the fact that all inferred invariants are indeed
invariants. There are two ways of inferring invariants, either
by Algorithm 2 or by the “guess and check” approach. In
the former case, the inferred invariant is indeed an invariant
according to Definition 3. In the latter case, the correctness
of the inferred invariant generated by learnI is ensured
by the validator which checks whether the learned invariant
is inductive. Given that all inferred invariants are sound,
Algorithm 1 is sound as it removes the dead nodes only when
the node invariants are false, removes the opaque nodes or
duplicates the part-opaque nodes when the branch condition
can be implied by the node invariants.

The complexity of the algorithm is o(n) without considering
the complexity of the invariant learning procedure, since the
learning process is a guess-and-check based method, it is very
hard to estimate the complexity especially when involving



the concrete execution of the contract. We thus evaluate it
empirically in the next section.

IV. IMPLEMENTATION AND EVALUATION

sOptimize is implemented in C++ with about 6,000 lines of
code. The smart contract is first compiled into EVM bytecode
and further disassembled into EVM opcodes with the help
of Solidity compiler and Ethereum toolkit. sOptimize then
constructs labelled CFG with EVM opcodes to get node
invariants and node assertions for each node. To update the
node invariants of loop-related nodes, sOptimize implements
the LINEARARBITRARY algorithm based on LIBSVM [20]
and C5.0 [21]. Z3 SMT solver is adopted to check the
satisfiability of constraints in the invariant candidate validation
phase and the redundant nodes identification phase.

A. Evaluation

In the following, we evaluate the effectiveness and efficiency
of sOptimize in practice by answering the following research
questions (RQ).

• RQ1: Are there many redundant opcodes in Ethereum
smart contracts?

• RQ2: Is sOptimize effective in reducing gases in practice?
• RQ3: What are the overhead in terms of gas and time by

sOptimize?

To the best of our knowledge, there are no off-the-shelf
tools which aim at reducing gas consumption on smart con-
tracts. Some tools are not open-source (e.g., GasReducer,
and GASPER etc.), some are designed for different purposes
(e.g., Gasol infers gas consumption3), others are optimization
tools for instructions’ sequence (e.g., ebso and syrup), which
concentrate on the optimization within a block, and moreover,
part of the tool (which converts the target bytecode blocks
to SFS [8], an intermediate form) is not available currently,
which prevents us from accessing the tool. That’s the reason
why there is no comparison design against other tools in above
RQs.

In this evaluation, we collected 8,140 verified Solidity
contracts with open-source licenses on Etherscan4, a lead-
ing BlockChain Explorer for Ethereum. Since the total gas
consumption is proportional to the transaction volume, we
select 1,152 contracts whose transactions are more than 100 to
evaluate the performance of sOptimize. The highest transaction
volume is 999,366, and the total transactions for all selected
contracts are 9.4 million units of gas as of June 14, 2020.
All experiment results are obtained on a machine running on
Ubuntu 16.04 with EVM version 1.9.10. The detailed hardware
configuration is 2.8 GHz x 8 Intel processor, 23.4 GB ram.

3There are options for optimization on storage related operations, but the
installation package provided is broken, we did not get the feedback.

4Accessed on https://etherscan.io/exportData?type=open-source-contract-
codes as of Jun.14, 2020.

1) Identification and Optimization: To conduct the ex-
periment, we further acquired the detailed information from
Etherscan, such as compiler versions, optimization options and
deployed contract names. The timeout set for sOptimize is:
global wall time, 3600 seconds and Z3 solver time limits, 10
seconds.

sOptimize identified 499 contracts that can be optimized
from 1,152 (43.3%) contracts in wall time. The result is shown
in Table I, column RT Size shows the average size of run-
time bytecode, columns D Node and O Node are the size
of dead node and redundant node identified by sOptimize in
bytes. Columns D GasReduce and T GasReduce stand for
the average gas unit reduced when a contract is deployed
to the blockchain and executed in a transaction. Column
D GasReduce is calculated with bytes removed ∗ 268 and
column T GasReduce is the summation of the gas consump-
tion for each executed instruction defined in Ethereum yellow
paper [1]. Note that we calculate the number with the base
case, which is the minimum gas reduced if those instructions
are executed. We can see the optimized bytes take a portion
of 2.0% ((96.1 + 15.8)/5616) against the contract bytecode
size, which causes a decrease of gas consumption of 29,900
gas units when the contract is deployed to the blockchain.
The gas reduction on transaction depends on the transaction
volumes, each transaction can reduce 328 units of gas, the
more frequently the optimized codes are invoked, the more
gas is reduced.
To answer RQ1: About 43.3% test subjects are potential to be
optimized and the contract size can be reduced 2.0% in terms
of bytes averagely, which can save 29,900 units of gas while
in deployment and 328 units of gas for transactions relevant
with these nodes afterwards in the run-time environment.

2) Effectiveness of sOptimize: We intend to study the
effectiveness of sOptimize through comparing the total gas
consumption while in deployment and transactions between
the optimized contracts and the original contracts from the
Ethereum Mainnet. We build up private chains in docker
containers with the same setup. To minimize the computation
resources, consensus of proof-of-authority is adopted and the
block time/interval is set to 3 seconds to accelerate the mining
rate. Then, we deploy the optimized contracts and the original
contracts respectively on two docker containers, replay all the
transactions on the private chains with the same input from
Ethereum Mainnet. 212 contracts are deployed to demonstrate
the effectiveness of sOptimize. Those containing a special
opcode CODECOPY in run-time bytecode is omitted at the
time, as non-trivial engineering work is required for complex
adjustment on the optimized bytecode sequence. We will
improve it in the future work.

The results are shown in Table II and Table III. Column
Mainnet Deploy in Tabel II is the average gas consumption
while deploying a smart contract to the Ethereum Mainnet.
Column oriPriv Deploy is to deploy the original contracts to
the private chain. op Deploy and allOp Deploy demonstrate
the average gas consumption for optimized contracts while
deployed to the private chain. op Deploy stands for optimiza-



TABLE I: Average Information for optimized Contracts

RT Size(bytes) D Node(bytes) O Node(bytes) D GasReduce T GasReduce

5,616 96.1 15.8 29,900 328

TABLE II: Average Gas Consumption of Benchmark Contracts for Deployment

Mainnet Deploy oriPriv Deploy op Deploy ∆op Deploy allOp Deploy ∆allOp Deploy

Deploy 1,462,809 1,271,657 1,246,082 -25,575 1,274,186 +2,529

TABLE III: Average Gas Consumption of Benchmark Contracts for Transaction

txSum Mainnet txSum oriPriv txSum op txSum ∆op txSum allOp txSum ∆allOp txSum

Case1 111,455,394 63,949,658 63,806,611 -143,047 63,682,008 -267,650
Case2 111,455,394 80,583,595 79,691,229 -592,366 79,629,394 -954,201

tion against dead nodes and redundant nodes. allOp Deploy
takes into account the partial-redundant nodes besides the
previous two nodes, which should consume more gas than
op Deploy and oriPriv Deploy. Columns ∆op Deploy and
∆allOp Deploy are the differences of gas consumption be-
tween optimized contracts and original contracts when de-
ployed to the private chain, i.e., difference between op Deploy,
allOp Deploy and oriPriv Deploy. Thus, “+” means increase
of the gas consumption, while “-” means decrease. Figure 4a
presents the results of Table II intuitively. From the graph, we
can clearly observe that, the gas consumption for deployment
of the optimized contracts is lower than that of the original
contracts and the Ethereum Mainnet. In contrast, the gas
consumption of deployment for allOp contracts are the highest
among all situations.

In Table III, Column Mainnet txSum is the average to-
tal gas consumption for a contract on Ethereum mainnet.
Column oriPriv txSum demonstrates the average total gas
consumption while all transactions are replayed on the pri-
vate chain. Columns op txSum and allOp txSum are the
gas consumption of the optimized contracts. ∆op txSum
and ∆allOp txSum are the difference between op txSum,
allOp txSum and oriPriv txSum. There are two cases in this
table. Case1 stands for the scenario that account1 deploys the
contracts and account2 invokes the transactions, and case2
stands for that account1 deploys the contracts and account1
invokes all the transactions. This design originates from our
observation that, the accounts for deployment and transaction
invocation are significant for the gas consumption on the
private chain, which is also expected, since the contracts may
restrict the access rights for different accounts at deployment
and transaction run-time, e.g., some functions can only be
accessed by the owner. Figure 4b illustrates the results of
Table III, from which we can get the following observations,

1) Gas consumption for deployment and transactions on
Ethereum Mainnet is larger than that on private chain.
This is reasonable as the users’ inputs may include
account-specific information in real Mainnet run-time,
which our emulation cannot completely depict on the
private chain. Thus, some transactions are reverted,

which causes the big gap on the gas consumption
between the Mainnet and the Private chain in both
tables. As shown in Figure 5, the function of mint only
works before a certain date, which is constrained by
the modifier beforeDeadline, and thus the transactions
to this function are all reverted on private chain.

2) Gas reduction for all-nodes optimization (column
∆allOp txSum) is larger than optimization on dead
nodes and redundant nodes only in both cases in Ta-
ble III, which is exactly consistent with our expectation.

3) Gas consumption in row Case2 is higher than that in
Case1. This is also due to the access problems, and
also the reason of two cases design. As illustrated by
function burn address in Figure 5, this function can
only be invoked by the owner due to the constraints of
modifier onlyOwner. If it is invoked by other accounts,
the optimized parts are never executed. This may be one
of the reasons that the gas reduction is not so impressive
in this private run-time experiment.

To answer RQ2: The reduction of gas consumption can be as
high as 25,575 units (2.1%) in deployment and 954,201 units
(1.2%) in transactions . We acknowledge that our optimization
may increase the gas consumption on deployment in terms
of overhead. Specifically, the overhead is generated while
the partial-redundant nodes are taken into consideration, as
some instructions are instrumented into the smart contracts.
However, if the optimization is only restricted on dead nodes
and redundant nodes, there is no overhead generated. As the
column ∆allOp Deploy shows in Table II, the gas consump-
tion for contract deployment grows by 2,529 units averagely as
explained in Example 2. The size of the instrumented opcodes
depends on the commonly-used module, if it is too large,
the gas consumption increases when the contract is deployed,
although it saves more gas as the transaction volume becomes
larger. In our experiment, the total gas saved of all transactions
for a contract can be 954,201 units totally, but also 2,529 gas
units is introduced while it is deployed. We expect a better
performance in the production run-time.
To answer RQ3: We answer this RQ from two aspects.
One the one hand, the overhead is generated in terms of gas



(a) Gas Consumption for Deployment (b) Gas Consumption for Transactions

Fig. 4: Gas Consumption

1 function mint(uint256 _amount) public beforeDeadline
returns (bool){...}

2 function burn_address(address _target) public onlyOwner
returns (bool){...}

Fig. 5: Access Control Example

consumption. As explained in RQ2, there are about 2,529
(0.2%) more gas units consumed while in deployment if the
partial-redundant nodes are taken into consideration. However,
the overhead is relatively small comparing to the overall
saving, 954,201 (0.3%) gas units, in the run-time transactions.
One the other hand, about 261.5 seconds are consumed while
in the analysis averagely for a contract. This is reasonable
regarding the enquiries for solving and invariant learning,
which is essential for the optimization on the premise of
correctness of the contract.

3) Threats to Validity: There are several threats to validity
in our evaluation. First, sOptimize may miss some redundant
codes in the analysis. The reasons come from two aspects,
the limitations of loop invariant learning and capabilities of
constraint solver. If a valid invariant is not learned within
a certain number of iterations (the default value is 10 in
sOptimize ), the node invariant will be true. The redundant
codes within the loop will be missed. Another factor is the
constraint solver, an opportunity for optimization is identified
only when the solver returns a “SAT” result. Thus, if the
constraint of a node is so complicated that an “UNKNOWN”
result is returned, we soundly assume that this node is non-
redundant. Second, our experiments are conducted on a private
test network (i.e., we compare the executions of contract
before and after optimization) as experimenting directly with
the Ethereum Mainnet is not feasible due to the cost. Thus,
the contract might behave differently on the private network
from the Ethereum Mainnet (e.g., due to dependency on
the Mainnet status). However, the results from the private
network provide a lower bound for our optimization because
many optimization-related transactions may be stopped from
executing which cut down the gas reduction of our tool.

V. RELATED WORK

sOptimize is an optimization tool for Ethereum contracts
based on smart contract analysis. Thus, we mainly concentrate
on two aspects of smart contracts relevant in this section, i.e.,
existing works on analysis and those on optimization.

Extensive work has been done for smart contracts anal-
ysis. For instance, symbolic execution engines like Oyente,
sCompile, SolAnalyser [12], [22], [23] systematically identify
vulnerabilities, like Transaction-Ordering Dependence, Times-
tamp Dependence, and Black-hole contracts. Oyente [22] is
the first tool to apply symbolic execution to find potential
security vulnerabilities, but Oyente can only perform intra-
procedural analysis. sCompile [12] introduced an approach
to reveal “money-related” vulnerabilities in smart contract
by identifying a small number of critical paths for user
inspection. MAIAN [24] further mimicked inter-procedural
invocations to find deeper vulnerabilities. ZEUS, solc-verify,
VerX and VeriSmart [25]–[28] introduce the policies, which
allow the users to define their own specifications and properties
including contract invariants, loop invariants, and function pre-
and post-conditions etc. They provide automated verification
against user specified properties. However, rare tools take into
consideration the gas analysis.

There are other works focusing on gas-related vulnerabil-
ities. Madmax [29] detected the gas-focused vulnerabilities
in smart contracts by combining a control-flow-analysis-based
decompiler and declarative program-structure queries. Chen et
al. [30] addressed the DoS attacks by dynamically adjusting
the costs of EVM operations according to the executions.
Albert et al. [6], [31] proposed methods and tools for auto-
matically inferring gas upper bounds for functions to avoid
out-of-gas vulnerabilities in smart contracts. GasFuzz [32]
applied feedback-directed fuzz testing to generate inputs which
could lead to a high gas consumption by contract functions.
SmartCheck [33] detected 21 kinds of issues in smart con-
tracts, two of which are gas-efficiency related. The first one is
to replace the usage of byte[] to bytes to reduce the gas cost.
The second one is to detect loops that contain big number
steps. These works all try to identify vulnerabilities through
abnormal gas consumption rather than optimization.

Currently there are few optimization tools on smart con-



tracts. Chen et al. proposed several approaches on detecting
under-optimized contracts and developed a series of tools, like
GASPER [5], GasReducer [4], and GasChecker [34]. The tool
GASPER can automatically locate 3 gas-costly patterns by
analyzing the bytecode of smart contracts, but GASPER can
only identify several under-optimized bytecode patterns, and
cannot optimize them. Based on GASPER, GasReducer [4]
conducts in-depth investigation on under-optimized smart con-
tracts’ bytecode and identifies 24 anti-patterns which will
then be replaced with efficient codes. However, the reduced
gas cost of each pattern that GasReducer can recognize is
very little and the patterns identified are heavily dependent
on experience. Compared to GASPER, GasChecker [34] de-
tects more gas-inefficient code patterns and proposes a new
approach to parallelize symbolic execution to make detecting
patterns scalable which can handle millions of smart contracts
by leveraging cloud computing platform whereas GASPER
uses sequential symbolic execution. However, to prevent path
explosion, GasChecker unfolds the loops up to four that will
result in false positives in detecting these patterns. Such prob-
lems are avoided by sOptimize by leveraging the technique of
invariant generation for loops and further correctly removing
the redundant codes.

VI. CONCLUSION

We leverage the static analysis techniques (i.e., lazy anno-
tation and loop invariant generation techniques) to identify
3 kinds of code blocks, i.e., dead node, redundant node,
and partial-redundant node and further remove the identi-
fied code blocks to optimize the contracts. An automatic
toolkit sOptimize is developed, and applied to 1,152 test
subjects, as many as 499 contracts are optimized. With the
comparison experiment on 212 contracts, the gas reduced for
deployment is around 25,575 gas units (2.0%) and the average
gas consumption reduced of all transactions for a contract is
around 954,201 gas units (1.2%).
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