
Deep Clustering by Gaussian Mixture Variational Autoencoders with

Graph Embedding

Linxiao Yang∗1,2, Ngai-Man Cheung‡1, Jiaying Li1, and Jun Fang2

1Singapore University of Technology and Design (SUTD)
2University of Electronic Science and Technology of China

‡
Corresponding author: ngaiman_cheung@sutd.edu.sg

Abstract

We propose DGG: Deep clustering via a Gaussian-

mixture variational autoencoder (VAE) with Graph embed-

ding. To facilitate clustering, we apply Gaussian mix-

ture model (GMM) as the prior in VAE. To handle data

with complex spread, we apply graph embedding. Our

idea is that graph information which captures local data

structures is an excellent complement to deep GMM. Com-

bining them facilitates the network to learn powerful rep-

resentations that follow global model and local struc-

tural constraints. Therefore, our method unifies model-

based and similarity-based approaches for clustering. To

combine graph embedding with probabilistic deep GMM,

we propose a novel stochastic extension of graph embed-

ding: we treat samples as nodes on a graph and min-

imize the weighted distance between their posterior dis-

tributions. We apply Jenson-Shannon divergence as the

distance. We combine the divergence minimization with

the log-likelihood maximization of the deep GMM. We de-

rive formulations to obtain an unified objective that en-

ables simultaneous deep representation learning and clus-

tering. Our experimental results show that our proposed

DGG outperforms recent deep Gaussian mixture meth-

ods (model-based) and deep spectral clustering (similarity-

based). Our results highlight advantages of combining

model-based and similarity-based clustering as proposed

in this work. Our code is published here: https://

github.com/dodoyang0929/DGG.git

1. Introduction

Clustering aims to classify data into several classes with-

out label information [15]. It is one of the fundamental

∗Work done at SUTD

tasks of unsupervised learning. A number of methods have

been proposed [38, 19, 8]. Based on the approaches to

model the space structure, most clustering methods can be

classified into two categories, namely, model based meth-

ods and similarity based methods. The model based meth-

ods, such as the Gaussian mixture model [4] and subspace

clustering[1, 36], focus on the global structure of the data

space. They put assumptions on the whole data space and

fit the data using some specific models. An advantage of

model based methods is their good generalization ability.

Once trained, new samples can be readily clustered using

the learnt model parameters. However, it is challenging

for these methods to deal with data with complex spread.

Different from model based methods, the similarity based

methods emphasize the local structure of the data. These

methods formulate the local structures using some similar-

ities or distances between the samples. Spectral clustering

[33, 26], a popular similarity-based method, constructs a

graph using the sample similarities, and treats the smoothest

signals on the graph as the features of the data. With mild

assumption, similarity-based methods achieve tremendous

success [25]. Many similarity-based methods, however,

suffer from high computational complexity. Spectral clus-

tering, for instance, requires to perform a singular value de-

composition when computing features, which is prohibitive

for large datasets. To address this issue, a lot of efforts

have been made and many methods have been proposed

[5, 10, 22, 39].

Deep clustering. Recent advanced deep learning tech-

nique offers new opportunities for clustering [24]. With

powerful capability to learn non-linear mapping, deep

learning provides a promising feature learning framework

[41, 37, 42]. Several works have considered to combine

the model-based clustering approach with deep learning,

where global assumptions were imposed on the feature

space [17, 7]. These methods jointly train the network to

6440

learn better features, and use the clustering results to di-

rect the network training. Leveraging the excellent fea-

ture learning ability of deep neural networks, these meth-

ods substantially outperform traditional clustering methods.

Several methods [21, 31] have also been proposed to com-

bine deep learning with similarity-based clustering method

to address the limitations of generalization and scalability.

SpectralNet [31], for example, is a recent work to learn a

mapping that maps data to their spectral embedding using

a deep neural network. The network is trained using the

mini-batch stochastic gradient descent to make sure that the

method is applicable for large scale dataset. Meanwhile,

once trained, embeddings of new samples can be obtained

via forward pass of the network. Therefore, the model is

easy to generalize. However, the method still needs to per-

form a Cholesky factorization in each epoch.

Our contribution. In spite of the success of exist-

ing clustering methods, few of them consider to combine

the model-based and similarity-based approaches. As the

model-based and similarity-based approaches focus on the

global and local structures of the data respectively, their

combination can potentially lead to powerful representa-

tion for clustering. With this motivation, in this work, we

propose a framework to combine model based and simi-

larity based approaches. As will be discussed, our work

can be viewed as an improvement of a model-based method

with local structure constraint to handle data with complex

spread. Alternatively, our work can also be viewed as an

improvement of a similarity based method with imposing

a global model explicitly in the latent space. Our model is

based on variational autoencoder [18], and we set the prior

distribution of the latent features to a Gaussian mixture dis-

tribution. To combine graph embedding with this proba-

bilistic deep GMM, we propose a stochastic extension of

graph embedding: We treat the data as the nodes of a sam-

ple similarity graph, and minimize the weighted distance

between their posterior distributions to exploit the similar-

ity information. We propose to use the Jenson-Shannon (JS)

divergence as the distance. Then, we relax it to its varia-

tional upper bound. After some formulation, we combine

the loss of stochastic graph embedding with the objective

function of deep GMM, and eventually derive a unified loss

function, which can be optimized using established repa-

rameterization trick and gradient descent. To illustrate the

superior of the proposed method, we perform experiments

on synthetic data and real-world data.

2. Related Work

The main idea of the recent deep learning-based cluster-

ing methods is to learn latent features of the training data

using deep neural networks. Then, traditional clustering

methods are applied to compute the cluster assignments. To

preserve some structure in the feature space, additional con-

straints are usually included in the network. Specifically,

DCN [41] incorporates clustering loss in the loss function of

an autoencoder to jointly refine the latent features and clus-

ter assignments. DEC [37] trains an autoencoder to learn

features and imposes a soft assignment constraint on the

them. DEPICT [7] consists of a convolutional autoencoder

and a single layer classifier, which learns the latent features

and the distribution of the cluster assignments, respectively.

The neural network is optimized by minimizing the recon-

struction error and the relative entropy between the distri-

butions of the cluster assignments and their prior. To make

the network more robust, clear and noisy images are trained

jointly. IMSAT [14] learns a discrete latent feature using a

network by maximizing the mutual information between the

training images and their latent features. To further improve

performance, IMAST augments the dataset by adding per-

mutation of training samples, and assumes that their latent

features produced by the network are invariant. Spectral-

Net [31] is a method based on the spectral clustering idea.

It attempts to learn a network that maps the training data

into the eigenspace of the graph Laplacian matrix. They

apply a Siamese network to learn the weights between the

graph nodes, and use k-means to perform the final cluster-

ing. Apart from these methods, several generative model

based methods have also been proposed. Most of them

are based on the variational autoencoder framework, but re-

place the prior of the latent variable to some specific distri-

butions, such as mixture of Gaussian distributions. Specif-

ically, VaDE [17] and GMVAE [7] assume the latent vari-

ables follows a mixture of Gaussian, where the means and

variances of the Gaussian components are trainable. The

LTVAE[23] assumes the latent variables obey a tree struc-

ture model, and iteratively update the structure to capture

the facets of the data.

The work that is mostly related to our work is VaDE.

Both VaDE and our work learn a Gaussian mixture model

for the latent features. However, the difference is clear and

significant: our method applies graph embedding to pre-

serve local structures of the data. Specifically, in VaDE, the

distribution of the latent features are learnt independently.

On the other hand, in our proposed method, we push the la-

tent distributions of the training samples to become close to

each other if the training samples are connected on the sam-

ple similarity graph. With the assistance of the graph, our

proposed method is able to learn powerful representations

and handle data with complex spread. Experiment results

suggest our proposed method outperforms VaDE.

3. Proposed Method

In this section, we first discuss the deep GMM as the

base of of method. Then, we discuss our main contribution:

combining graph embedding in the deep generative model.

We discuss our proposed formulation to combine stochas-

6441

tic graph embedding regularization with the loss of deep

GMM. We also discuss update of parameters and construc-

tion of the affinity matrix of the graph.

3.1. Deep Gaussian Mixture Model

Given a set of D-dimensional training samples

{xn}
N
n=1, we aim to cluster them into K classes. For each

training sample x, we learn a latent feature z ∈ R
M×1 for

it. We assume the latent features follows a Gaussian mixture

distribution. We introduce a binary vector c ∈ {0, 1}k×1 to

indicate which Gaussian component that the latent feature

z belongs to.

3.1.1 Generative model

In our model, we assume the data is drawn from a Gaussian

mixture distribution. Specifically, for a sample x, we model

its generative process as follows:

p(c;π) =

K
∏

k=1

πck
k (1)

p(z|ck = 1) = N (µk, diag(σ2
k)) (2)

pθ(x|z) =

{

Ber(µx) if x is binary

N (µx, λI) x is real-valued
(3)

where ck and πk denote the kth entry of c and π, respec-

tively, πk satisfied
∑K

k=1 πk = 1, µk and σ2
k denotes the

mean and variance of the kth Gaussian component, respec-

tively, µx = g(zn; θ), I denotes the identity matrix, λ is a

predefined parameter, and g is a neural network with train-

able parameters θ.

3.1.2 Inference model

Directly solving the generative model, i.e. finding maxi-

mum a posterior (MAP) of latent variables and maximum

likelihood estimation (MLE) of parameters, is difficult. To

address this issue, we approximate the posterior distribu-

tion pθ(z, c|x) using a new distribution qφ(z, c|x), which

is drawn from specific class and parameterized by trainable

parameter φ. Specifically, we assume qφ(z, c|x) can be fac-

torized as qφ(z, c|x) = qφ1
(z|x)qφ2

(c|z). Then we define

qφ1
(z|x) = N (µ̃, diag(σ̃2)) (4)

qφ2
(c|z) = Multinomial(π̃) (5)

where

[µ̃, log(σ̃2)] = f1(x;φ1) (6)

π̃ = f2(z;φ2) (7)

Here f1 and f2 denote neural networks with parameters φ1

and φ2, respectively. The model contains two neural net-

works. The first one f1 learns the latent distributions from

the training samples, and the second one f2 computes the

probability of which Gaussian component the latent fea-

tures belong to.

With the framework of the generative model and infer-

ence model, the parameters can be estimated by maximizing

the log-likelihood function, i.e.,

max
φ,θ

N
∑

i=1

ln pθ(xi) (8)

The problem (8) is usually solved by maximizing the evi-

dence lower bound (ELBO) of the log-likelihood function

with reparameterization trick [18]. We note that the pro-

posed model consists three networks, i.e., g, f1, and f2. We

refer g and f1 as the decoder and encoder, respectively, as

they form an variational autoencoder (VAE). We refer f2 as

the classifier, as it classifies the latent features into one of

the K classes.

3.2. VAE with Graph Embedding

Graph embedding [40, 28, 2, 13, 16, 29, 27] aims to find

the low-dimension features that preserve the similarity re-

lationship between the vertex pairs in a sample similarity

graph. Generally, under graph embedding, training samples

{xn} are viewed as the vertexes of a similarity graph that is

characterized by an affinity matrix W . The optimal features

{z∗
n} are found by [40]

{z∗
n} = arg min

ZZT=I

N
∑

i=1

N
∑

j=1

wij‖zi − zj‖
2
2 (9)

where Z = [z1, . . . , zN], wij denotes the (i, j)th element

of W . The constraint ZZT = I is used to avoid trivial

solutions. From (9), we can see that if samples are con-

nected on the graph, their features will be close to each

other. This inspires us that if the two samples are connected

on the graph, they should have similar latent features and

cluster assignments. As we have discussed, in our model,

the latent features and cluster assignments are random vari-

ables. Therefore, we propose to measure the distance of the

posterior distributions. To this end, we propose to add a

constraint to the problem (8), and arrive at

max
φ,θ

N
∑

i=1



ln pθ(xi)−
N
∑

j=1

wijd(qφ(z, c|xi), qφ(z, c|xj))





(10)

where d(·, ·) is a metric that measure the distance between

two distributions. To balance the weight of each training

samples, we further require
∑

j wij = 1. Note that (10)

is similar to (9) in spirit, but formulate the relationship be-

tween the features stochastically. Moreover, we impose the

6442

graph embedding constraint not only on the features, but

also on the cluster assignments. This makes the clustering

results smooth w.r.t. the graph. Note that, different from tra-

ditional methods that need additional constraint, our model

with an autoencoder can automatically avoid trivial solu-

tions by forcing the features able to reconstruct the original

data.

The selection of d(·, ·) plays a critical role for the pro-

posed method. We note that it is not trivial to select a proper

d(·, ·): the latent feature z and the cluster assignment c are

related, and there is no analytical expression for their joint

distribution, which makes most divergence difficult to ap-

ply. In this paper, we select the Jenson-Shannon (JS) diver-

gence [9], i.e.,

max
φ,θ

N
∑

i=1



ln pθ(xi)−
N
∑

j=1

wijJS(qφ(z, c|xi), qφ(z, c|xj))





(11)

We will show that after appropriate relaxation, (11) can be

solved.

3.2.1 Learning algorithms

In this subsection, we discuss how to solve (11). It is noted

that there is no closed form solution of the JS divergence

between qφ(z, c|xi) and qφ(z, c|xj). Thus minimizing the

JS divergence has to resort to the reparameterization trick,

which will lead to large estimate variance, as the posterior

qφ(z, c|x) is related to all the K Gaussian component. To

overcome the difficulty, instead of directly minimizing the

JS divergence, we minimize a variational upper bound of it.

We define

G(φ, θ,xi,xj) =
1

2
KL(qφ(z, c|xi)||pθ(z, c|xi))

+
1

2
KL(qφ(z, c|xj)||pθ(z, c|xi)) (12)

and notice

G(φ, θ,xi,xj)

=JS(qφ(z, c|xi)||qφ(z, c|xj)) + KL(M ||pθ(z, c|xi))

≥JS(qφ(z, c|xi)||qφ(z, c|xj)) (13)

where M = 1
2 (qφ(z, c|xi) + qφ(z, c|xj)), and the equa-

tion holds when M = pθ(z, c|xi). We arrive at that

G(φ, θ,xi,xj) is an upper bound of the JS divergence be-

tween qφ(z, c|xi) and qφ(z, c|xj). Thus we can minimize

the upper bound G(φ, θ,xi,xj) with respect to φ and θ al-

ternatively to downhill the JS divergence between the pos-

teriors. Specifically, we first minimize G(φ, θ,xi,xj) with

respect to θ to reduce the gap between the JS divergence

and its upper bound. Then we fixed θ and minimize the

G(φ, θ,xi,xj) with respect to φ to decrease the value of JS

divergence.

In the following, we show that G(φ, θ,xi,xj) can be ab-

sorbed in the log-likelihood function. For a training sample

xi, its log-likelihood ln pθ(xi) can be decomposed as [4]

ln pθ(xi) =KL(qφ(z, c|xi)||pθ(z, c|xi))

+ Eqφ(z,c|xi)

[

ln
pθ(xi, z, c)

qφ(z, c|xi)

]

(14)

Surprisingly, the above equation still holds if we replace

qφ(z, c|xi) with qφ(z, c|xj) (see derivation in supplemen-

tary), that is,

ln pθ(xi) =KL(qφ(z, c|xj)||pθ(z, c|xi))

+ Eqφ(z,c|xj)

[

ln
pθ(xi, z, c)

qφ(z, c|xj)

]

(15)

Averaging the equation (14) and (15), we have

ln pθ(xi) =G(φ, θ,xi,xj)

+
1

2
(L(θ,φ;xi) + L(θ,φ;xi,xj)) (16)

where

L(θ,φ;xi) = Eqφ(z,c|xi)

[

ln
pθ(xi, z, c)

qφ(z, c|xi)

]

(17)

L(θ,φ;xi,xj) = Eqφ(z,c|xj)

[

ln
pθ(xi, z, c)

qφ(z, c|xj)

]

(18)

Recall the constraint that
∑

j wij = 1, we can rewrite the

objective function as

max
φ,θ

1

2

N
∑

i=1

N
∑

j=1

wij(L(θ,φ;xi) + L(θ,φ;xi,xj)) (19)

An intuitive explanation of the objective function (19) is

that: for a sample xi, it should not only be reconstructed by

the feature of itself, but also be reconstructed by that of xj .

This corroborates the success of [6, 30, 32], where a similar

strategy is used, but none of them provides explanation.

We now evaluate the objective function in (19) according

to the proposed inference and generative model. Recall the

dependency of the variables, L(θ,φ;xi) can be rewritten

as

L(θ,φ;xi)

=Eqφ(z|xi)qφ(c|z)

[

ln
pθ(xi|z)p(z|c)p(c)

qφ(z|xi)qφ(c|z)

]

(20)

Substituting (4), (5), (1), (2), (3) into (20), and applying the

6443

reparameterization trick, L(θ,φ;xi) can be given as

L(θ,φ;xi)

≈
D
∑

d=1

xi
d logµxi

|d + (1− xi
d) log(1− µxi

|d)

−
K
∑

k=1

γik

M
∑

m=1

(logσ2
k|m +

σ̃2
i |m

σ2
k|m

+
(µ̃i|m − µk|m)2

σ2
k|m

)

+
K
∑

k=1

γik log
πik

γik
+

1

2

M
∑

m=1

(1 + log σ̃2
i |m) (21)

where D is the dimension of x and µxi
, xi

d is the dth el-

ement of xi, and ∗|m denotes the mth element of ∗, γik
denotes q(ck = 1|zi) for simplicity. Here

µxi
= g(zi; θ) (22)

zi = µ̃i + σ̃i ◦ ǫ (23)

[µ̃i, log(σ̃
2
i)] = f(xi, φ) (24)

where ǫ is a vector with all its entries are drawn inde-

pendently from the normal distribution, and “◦” denotes

element-wise product.

Similarly, L(θ,φ;xi,xj) can be rewritten as

L(θ,φ;xi,xj)

=Eqφ(z|xj)qφ(c|z)

[

ln
pθ(xi|z)p(z|c)p(c)

qφ(z|xj)qφ(c|z)

]

(25)

and be finally evaluated by

L(θ,φ;xi,xj)

≈
D
∑

d=1

xi
d logµxj

|d + (1− xi
d) log(1− µxj

|d)

−
K
∑

k=1

γjk

M
∑

m=1

(logσ2
k|m +

σ̃2
j |m

σ2
k|m

+
(µ̃j |m − µk|m)2

σ2
k|m

)

+

K
∑

k=1

γjk log
πik

γjk
+

1

2

M
∑

m=1

(1 + log σ̃2
j |m) (26)

where

µxj
= g(zj ; θ) (27)

zj = µ̃j + σ̃j ◦ ǫ (28)

[µ̃j , log(σ̃
2
j)] = f(xj , φ) (29)

3.2.2 Update of Parameters

We discuss the update of the parameters in our model. The

parameters {µk,σk}
K
k=1 are updated using the mini-batch

stochastic gradient descent as they are related to all the

training samples. For the parameters {πi}
N
i=1, we optimize

them by maximizing (19). In what follows, we discuss the

update for πi. Substitute (21) and (26) into (19), and re-

move the terms independent with πi, then the optimal πi is

given as

π∗
i = argmax

∑
K
k=1

πik=1

∑

j∈Ωi

wij(

K
∑

k=1

(γik + γjk) lnπik) (30)

where πik denotes the kth entry of πi, and Ωi denotes the

set {j|wij 6= 0}. Using the Lagrange multiplier method [3],

πik can be updated as

πik =

∑

j∈Ωi
wijγik

∑

j∈Ωi
wij(γik + γjk)

(31)

3.3. Construction of the Affinity Matrix

Similar to other graph embedding methods, it is impor-

tant to have a properly constructed affinity matrix. A typ-

ical selection of the affinity matrix is to find a set nearest

neighbors for a given data point and compute their simi-

larity using a predefined kernel function. For instance, with

Gaussian kernel, the element of the affinity matrix is defined

as

wij =

{

1
ai

exp(−‖xi−xj‖
2

2

2s2
i

) if xj ∈ N (xi)

0, otherwise
(32)

where si is a predefined scalar, N (xi) denotes the set con-

sist of the nearest Ns neighbors of xi, and ai is a normalizer

that makes
∑

j wij = 1.

To make the proposed method more robust to the dif-

firent data set, we train a Siamese network [11, 31] to mea-

sure the similarity between the data points. The details of

the Siamese network can be found in the Appendix.

In summary, we have introduced a deep graph

embedding-based Gaussian mixture VAE for clustering. We

summarize our proposed method in Algorithm 1.

4. Experiments

We conduct experiments to show the superior of the pro-

posed method. Throughout our experiments, we initialize

the network with the following procedure. We first perform

greedy layer-wise training in denoising autoencoder man-

ner, and then stack them into a deep autoencoder. Then, the

network is trained as a variational autoencoder. After we

have pretrained the network, we collect the representations

learnt by the pretrained network. K-means is employed to

cluster the representations and generate pseudo-label, with

which we train the classifier network f2. The means of the

Gaussian mixture model is initialized using the cluster cen-

ters determined by K-means, and the variance is initialized

by its unbiased estimator.

6444

Figure 1. Results of the proposed method and VaDE on 2D examples with different cluster distance. From left to right: training data in

Euclidean space, learnt latent features by VaDE, clustering result of VaDE, learnt latent features by DGG (our proposed method), clustering

result of DGG. Compared to VaDE (model-based), improvement with combining model-based and similarity-based as in our DGG is clear.

Algorithm 1

Input: Training samples {xn}
N
n=1, number of desired

clusters K, batch-size m.

Output: cluster index {cn}
N
n=1 and prameters of GMM

{µk,σk}
K
k=1.

1: Built the directed graph according to Euclidean dis-

tance or Siamese distance, compute the affinity matrix

and form the training tuples;

2: while not converge do

3: Draw a mini-batch training tuples {xi, {xj}j∈Ωi
};

4: Compute q(z|xi) and {q(z|xj)}j∈Ωi
;

5: Generate samples zi and {zi}j∈Ωi
according to (23)

and (28), respectively.

6: Evaluate the objective function of (21) and (26) using

the generated samples.

7: Update network parameters and {µk,σk}
K
k=1;

8: Update πi via (31);

9: end while

4.1. Synthetic data

We first show the effectiveness of the proposed method

on the synthetic data. We generate two classes of 2-

dimensional training samples. Each class contains 2000
points, and forms a half circle in the data space. We clus-

ter these points using the proposed method and VaDE. For

the proposed method, we use the network structures of

2−20−20−2 for encoder, and 2−20−20−2 for decoder,

and 2 − 2 for classifier. All the layers are fully connected.

The activate function is ReLU. We select 40 nearest neigh-

bors to construct the affine matrix according to (32). We

use the Adam optimizer with initial learning rate set to 0.02
and decay every 10 epoch by a factor 0.9. Note that, for fair

comparison, the network architecture and the training setup

of VaDE are same as our proposed method. Fig.1 shows

the cluster results and the learnt latent features (mean of

q(z|x)) of respective methods on the samples with differ-

ent inter-class distances. From Fig.1, we can observe that

our proposed method produces promising cluster results for

both cases with different class distances. On the other hand,

VaDE cannot cluster the two classes correctly. With the

assistance of graph information, our proposed method per-

forms well even the two clusters are quite near.

Another observation from Fig.1 is that the latent features

learnt by the proposed method are aligned with the coordi-

nate. This is because, by the network design, the posterior

distributions of the latent features are forced to have diag-

onal covariance matrices. The JS divergence decreases if

two latent distributions (Gaussian distributions) align with

the coordinate. This property can help learn disentangled

representations for the training samples.

4.2. Real­world data

We conduct experiments on the real-world data to eval-

uate the proposed method. Several widely known datasets

are used, namely, MNIST, STL-10, Reuters, and HHAR,

where MNIST and STL-10 are image datasets, Reuters is

a dataset consists of the TF-IDF features of the word, and

HHAR is a sensor signal dataset. We vectorize the im-

ages in MNIST, and subtract features for STL-10 using

the pretrained ResNet-50 [12]. After the preprocessing,

the MNIST contains 10 classes of 786-dimensional train-

ing samples and 7000 samples for each class, the STL-10

contains 10 classes of 2048-dimensional training samples

and 1300 samples for each class, the Reuters contains 4

classes of 2000-dimensional training samples and 10000

samples in total, and the HHAR contains 10 classes of

561-dimensional training samples and 10200 samples in to-

tal. We compare our method with several state-of-art deep

learning based clustering methods, including AE+GMM,

DEC, IMSAT, VaDE, SpectralNet, and LTVAE. For the pro-

posed method, we use the network structure of D-500-500-

6445

Table 1. Clustering accuracy of the respective methods

Method MNIST STL-10 Reuters HHAR

AE+GMM 82.18 79.83 70.98 77.67

DEC [37] 84.3 80.64 74.32 79.86

IMSAT [14] 98.4 ± 0.4 94.1 ± 0.4 71.0 ± 4.9 -

VaDE [17] 94.46 84.45 79.83 84.46

SpectralNet [31] 97.1±0.1 - 80.3±0.6 -

LTVAE [23] 86.30 90.00 80.96 85.00

DGG (Proposed) 97.58±0.1 90.59±0.2 82.3±1.2 89.04±0.1

Figure 2. Images generated by the proposed model and estimated variance of the components in GMM. All the four sub-figure is generated

similarly. We take sub-figure at the left upper as an example. Left part: images generated by sampling the latent code from one Gaussian

component of the learnt GMM. The image at ith row jth column is generated by inputting µ+ 4aj(ei ◦σ) into the decoder, where µ and

σ are the mean and standard deviation of the learnt Gaussian component, ei is a vector of length 10 with all of its elements equal to 0,

but the ith one equals to 1, aj = −1 + (j − 1)/7. Right part: from top to bottom: the bar at the ith row denotes the amplitude of the ith
element of σ2

2000-10 for encoder, 10-2000-500-500-D for decoder, 10-

L (L = 10) or 10-L-L (L < 10) for classifier, where D

denotes the dimension of the training samples, and L de-

notes the number of classes. All layer are fully connected

and ReLU is used as activate function. We randomly select

20 among 100 nearest neighbors generated by the Siamese

network to construct affine matrix using (32). Adam opti-

mizer is used with initial learning rate set to 0.02 and de-

cays every 10 epochs with factor 0.9. The parameter λ is

set to 10, 10, 0.01 for STL-10, Reuters, and HHAR, re-

spectively. We note that the network architecture used in

the proposed method are same with that of VaDE and LT-

VAE for a fair comparison. We measure the performance

of respective methods using the cluster accuracy, which is

defined as

ACC = max
m

∑N

n 1{ln = m(cn)}

N
(33)

where ln and cn denotes the ground-truth label and the clus-

ter assignment generated by the algorithm for sample xn,

respectively. The m tries all the possible one-to-one map-

pings between the label and cluster.

We show the results of clustering accuracy achieved by

the respective methods on Tab.1, and highlight the top two

accuracy scores. From the Tab.1 we have following ob-

servations. 1) For MNIST and STL-10 datasets the IM-

SAT performs best, while the proposed method produce

competitive clustering accuracy. For the Reuters dataset,

6446

the proposed method achieve the highest clustering accu-

racy and outperform the IMAST by a large margin. 2) The

proposed method substantially outperform VaDE. This sup-

ports our claim that although both the proposed method and

VaDE are based on the Gaussian mixture model framework,

the proposed method, however, also exploits the additional

graph information and thus outperforms VaDE. 3) The pro-

posed method outperforms SpectralNet, which also utilizes

graph information. This is because SpectralNet is a two-

stage method which first learns the latent features using

the network with the affinity information and then performs

clustering use k-means. Our proposed method, however,

jointly learns the latent features and performs clustering us-

ing GMM, which make it superior than SpectralNet.

4.3. Generating Samples

Another advantage of the proposed method is that it can

naturally be used to generate realistic images. More sur-

prisingly, the latent features learnt by the proposed method,

as analysed above, are tending to align with the coordi-

nates, which leads to the variance of some coordinates of the

Gaussian component collapse to zero. This is due to that the

covariance matrix of the Gaussian components in GMM are

forced to be diagonal, thus elements of the variance σk cap-

ture the spread width of the latent features on corresponding

coordinates. As the latent features are constrained to be able

to reconstruct the original samples, the coordinates with

small variance carry few information of the cluster, while

these coordinates with large variance capture the variation

tendency of the images in the cluster. This provides op-

portunity to estimate the numbers of the factors that control

an image using the variance of the Gaussian component. To

this end, we train our model on the MNIST dataset, and gen-

erate samples using the learnt Gaussian components. We

plot the images generated by the decoder of our model as

well as the learnt variance of the Gaussian components on

Fig.2. From Fig.2, we see that the variance vector σk of the

learnt Gaussian are sparse or approximately sparse, which

collaborates our claim that the learnt features align with the

coordinates. From the images in the left-up corner of the

Fig.2, we see that for digital number “1”, only two factors

affect the image, i.e., the degree of the thinness and rotation,

and the corresponding coordinates of the Gaussian compo-

nent have large variance. The same factors also affect the

number “0”, “7”, and “8” through the same coordinates.

But apart from the degree of the thinness and rotation, the

variances of the Gaussian component also reflect other fac-

tors that control the images of these digital number, such

as width and height of the number. Moreover, the model is

also able to identify some specific factors for the images,

such as degree of the sharpness of the corner of the number

“7”, the ratio between the sizes of the upper and lower cir-

cle of the number “8”. This ability is helpful when learn a

Table 2. Clustering accuracy with different number of neighbors

Ns 0 1 3 10 20 30

ACC 94.82 96.98 97.33 97.52 97.58 97.49

disentangled representation.

4.4. Impact of the number of neighbors

We further investigate the impact of the number of neigh-

bors used to construct the affinity matrix. The affinity ma-

trix is critical in our model. More neighbors will involve

additional information helping the clustering, but it also in-

crease the probability that including inconsistent neighbors,

which may mislead the clustering. Tab.2 shows the aver-

age performance of the proposed method on MNIST with

different number of neighbors, denoted by Ns, involved.

From Tab.2, we see that once the graph information is in-

volved, the performance of the proposed method is signifi-

cantly improved immediately, even only a few of neighbors

are involved. Meanwhile, with increase of the number of

the neighbors, the clustering accuracy keep improved, until

too many neighbors are included.

5. Conclusion

We have proposed a graph embedding variational GMM

for clustering. We have proposed stochastic graph embed-

ding to impose a regularization on the pair of samples that

connected on graph to push them to have similar posterior

distributions. The similarity was measured by the Jenson-

Shannon (JS) divergence, and a upper bound was derived

to enable efficient learning. The proposed method outper-

forms deep model-based clustering and deep spectral clus-

tering. Future work investigates extension with GAN dis-

criminators [20, 34, 35].

Acknowledgement

This research is supported by the National Research
Foundation Singapore under its AI Singapore Programme
(Award Number: AISG-100E-2018-005). This work is
also supported by both ST Electronics and the National
Research Foundation (NRF), Prime Minister’s Office, Sin-
gapore under Corporate Laboratory at University Scheme
(Programme Title: STEE Infosec - SUTD Corporate Labo-
ratory). This work is supported in part by the National Sci-
ence Foundation of China under Grant 61871091. Linxiao
Yang is supported by the China Scholarship Concil.

References

[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos,

and Prabhakar Raghavan. Automatic subspace clustering

of high dimensional data for data mining applications, vol-

ume 27. ACM, 1998.

6447

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for

dimensionality reduction and data representation. Neural

computation, 15(6):1373–1396, 2003.

[3] Dimitri P Bertsekas. Constrained optimization and Lagrange

multiplier methods. Academic press, 2014.

[4] Christopher M Bishop. Pattern recognition and machine

learning. springer, 2006.

[5] Deng Cai and Xinlei Chen. Large scale spectral clustering

via landmark-based sparse representation. IEEE transactions

on cybernetics, 45(8):1669–1680, 2015.

[6] Dongdong Chen, Jiancheng Lv, and Yi Zhang. Unsupervised

multi-manifold clustering by learning deep representation. In

Workshops at the Thirty-First AAAI Conference on Artificial

Intelligence, 2017.

[7] Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo,

Matthew CH Lee, Hugh Salimbeni, Kai Arulkumaran, and

Murray Shanahan. Deep unsupervised clustering with

gaussian mixture variational autoencoders. arXiv preprint

arXiv:1611.02648, 2016.

[8] Richard O Duda, Peter E Hart, and David G Stork. Pattern

classification. John Wiley & Sons, 2012.

[9] Dominik Maria Endres and Johannes E Schindelin. A new

metric for probability distributions. IEEE Transactions on

Information theory, 2003.

[10] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra

Malik. Spectral grouping using the nystrom method. IEEE

transactions on pattern analysis and machine intelligence,

26(2):214–225, 2004.

[11] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-

ity reduction by learning an invariant mapping. In 2006 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR’06), volume 2, pages 1735–1742.

IEEE, 2006.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[13] Xiaofei He and Partha Niyogi. Locality preserving projec-

tions. In Advances in neural information processing systems,

pages 153–160, 2004.

[14] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto,

and Masashi Sugiyama. Learning discrete representations

via information maximizing self-augmented training. In Pro-

ceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 1558–1567. JMLR. org, 2017.

[15] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data

clustering: a review. ACM computing surveys (CSUR),

31(3):264–323, 1999.

[16] Bo Jiang, Chris Ding, Bio Luo, and Jin Tang. Graph-

laplacian pca: Closed-form solution and robustness. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3492–3498, 2013.

[17] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and

Hanning Zhou. Variational deep embedding: An unsuper-

vised and generative approach to clustering. In Proceedings

of the 26th International Joint Conference on Artificial Intel-

ligence, pages 1965–1972, 2016.

[18] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[19] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Cluster-

ing high-dimensional data: A survey on subspace clustering,

pattern-based clustering, and correlation clustering. ACM

Transactions on Knowledge Discovery from Data (TKDD),

3(1):1, 2009.

[20] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo

Larochelle, and Ole Winther. Autoencoding beyond pix-

els using a learned similarity metric. In Proceedings of the

33rd International Conference on International Conference

on Machine Learning - Volume 48, ICML’16, 2016.

[21] Marc T Law, Raquel Urtasun, and Richard S Zemel. Deep

spectral clustering learning. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70, pages

1985–1994. JMLR. org, 2017.

[22] Mu Li, James T Kwok, and Bao-Liang Lu. Making large-

scale nyström approximation possible. In ICML, pages 631–

638, 2010.

[23] Xiaopeng Li, Zhourong Chen, Leonard KM Poon, and

Nevin L Zhang. Learning latent superstructures in varia-

tional autoencoders for deep multidimensional clustering. In

7th International Conference on Learning Representations,

2019.

[24] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing

Cui, and Jun Long. A survey of clustering with deep learn-

ing: From the perspective of network architecture. IEEE

Access, 6:39501–39514, 2018.

[25] Maria CV Nascimento and Andre CPLF De Carvalho. Spec-

tral methods for graph clustering–a survey. European Jour-

nal of Operational Research, 211(2):221–231, 2011.

[26] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral

clustering: Analysis and an algorithm. In Advances in neural

information processing systems, pages 849–856, 2002.

[27] Feiping Nie, Zinan Zeng, Ivor W Tsang, Dong Xu, and

Changshui Zhang. Spectral embedded clustering: A frame-

work for in-sample and out-of-sample spectral clustering.

IEEE Transactions on Neural Networks, 22(11):1796–1808,

2011.

[28] Feiping Nie, Wei Zhu, and Xuelong Li. Unsupervised large

graph embedding. In Thirty-first AAAI conference on artifi-

cial intelligence, 2017.

[29] Sam T Roweis and Lawrence K Saul. Nonlinear dimen-

sionality reduction by locally linear embedding. science,

290(5500):2323–2326, 2000.

[30] Edgar Schönfeld, Sayna Ebrahimi, Samarth Sinha, Trevor

Darrell, and Zeynep Akata. Generalized zero-and few-shot

learning via aligned variational autoencoders. arXiv preprint

arXiv:1812.01784, 2018.

[31] Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen

Basri, and Yuval Kluger. Spectralnet: Spectral clustering us-

ing deep neural networks. In Sixth International Conference

on Learning Representations, 2018.

[32] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi

Jaakkola. Style transfer from non-parallel text by cross-

alignment. In Advances in neural information processing

systems, pages 6830–6841, 2017.

6448

[33] Jianbo Shi and J. Malik. Normalized cuts and image segmen-

tation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):888 – 905, 2000.

[34] Tran Ngoc Trung, Tuan Anh Bui, and Ngai-Man Cheung.

Dist-gan: An improved gan using distance constraints. In

ECCV, 2018.

[35] Tran Ngoc Trung, Tuan Anh Bui, and Ngai-Man Che-

ung. Improving gan with neighbors embedding and gradient

matching. In AAAI, 2019.

[36] René Vidal. Subspace clustering. IEEE Signal Processing

Magazine, 28(2):52–68, 2011.

[37] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised

deep embedding for clustering analysis. In International

conference on machine learning, pages 478–487, 2016.

[38] Rui Xu and Donald C Wunsch. Survey of clustering algo-

rithms. 2005.

[39] Donghui Yan, Ling Huang, and Michael I Jordan. Fast ap-

proximate spectral clustering. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 907–916. ACM, 2009.

[40] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang,

Qiang Yang, and Stephen Lin. Graph embedding and ex-

tensions: A general framework for dimensionality reduction.

IEEE Transactions on Pattern Analysis & Machine Intelli-

gence, (1):40–51, 2007.

[41] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi

Hong. Towards k-means-friendly spaces: Simultaneous deep

learning and clustering. In Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, pages

3861–3870. JMLR. org, 2017.

[42] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-

vised learning of deep representations and image clusters.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5147–5156, 2016.

6449

