
1

An Invariant Inference Framework by
Active Learning and SVMs

Li Jiaying
Singapore University of Technology and Design

lijiaying1989@gmail.com

Abstract—We introduce a fast invariant inference framework
based on active learning and SVMs (Support Vector Machines)
which aims to systematically generate a variety of loop invariants
efficiently. Given a program containing one loop along with a
precondition and a post-condition, our approach can learn an
invariant which is sufficiently strong for program verification or
otherwise provide counter-examples to assist software developers
to locate program bugs. By invoking learning and checking phases
iteratively, our preliminary experiments show, this approach may
be potentially more effective and efficient when compared with
other existing approaches.

Index Terms—invariant inference, active learning, SVMs.

I. INTRODUCTION

SOFTWARE correctness plays a crucial role in this digital
and software-driven world. For most traditional program

verification techniques, discovering loop invariants is at the
heart of automated program verification. Once we get loops in-
variants which are sufficiently strong, program verification can
be easily solved by state-of-the-art solvers automatically. To
solve the invariant problem, top computer scientists have cre-
ated a variety of approaches or even borrowed ideas from other
fields, such as abstract interpretation[1], interpolation[2][3],
counter-example guided predicate abstraction[4], applying ma-
chine learning techniques[5][6][7] etc. Despite of these inno-
vative ideas, there is still a long way to go towards invariants
inference in arbitrary program containing loops.

A. Static approach v.s. Dynamic approach
In general, existing approaches on finding invariants can be

grouped into two categories: static approaches which synthe-
size invariants based on program source code without running
program, and dynamic approaches which produce invariants
based on program executions.

For static approaches, the advantage is they can generate
very precise but complex invariants in principle. But effective-
ness of static approaches depends largely on the complexity
of code. For complicated code which are usually written by
developers, synthesizing invariants by static approaches is not
only unpractical but impossible[8].

On the contrast, dynamic approaches make effort on a
totally different direction, which can be completely agnostic
of the program. They may come up with invariants efficiently
as they are simply constrained to learn some predicate that
is consistent with given program executions. What’s more,
machine learning[9] and data mining[10], which have been

advanced so quickly over these years, offer quite a variety of
technical alternatives to assist solving invariant learning prob-
lem. For instance, in [6] and [7], the authors applied learning
algorithms based on decision trees to learn loop invariants.
As a result, dynamic approaches to learning invariants have
gained popularity in recent years.

In learning-based dynamic approaches, such as [11] and [5],
they often split the synthesizer of invariants into two roles:
an honest teacher and a learner. And also split the learning
procedure into many rounds of “guess and check”: in the
guessing phase, the learner learns from given samples and
propose an invariant hypothesis H, then in the checking phase,
the teacher checks whetherH is adequate to verify the program
and sends some feedback to the learner . The process continues
until the teacher agrees on learner’s hypothesis.

B. Passive learning v.s. Active learning
In [5], Garg. et al. suggest a new learning paradigm called

ICE-learning for synthesizing invariants by learning from ex-
amples, counter-examples, and implications. The authors prove
ICE-learning algorithm can guarantee convergence on a finite
class C of concepts. However, they do not show how fast this
learning process converges. In the worst case, the algorithm
can get the right classifier until it has tried all wrong classifiers,
which means the learning can converge very slow. This result
is not casual because of the passive learning nature of ICE-
learning. In passive learning, the learner can only digest given
materials in hand without discovering more. In our framework,
we develop an active learning framework to overcome this
convergence limitation through two means: state chains, which
provides the learner with more data and dependency relations
in certain program executions; and active learning, in which
setting the learner can have more opportunities to interact with
the teacher to gain more learning materials to help refine its
hypothesis.

Fig. 1. Big View for Invariants Inference Framework

We get this intuition from Anguluin’s L∗ learning algo-
rithm[12]: when the learner try to learn a consistent DFA,

2

it can ask two kinds of queries: membership queries and
candidate queries. A membership query is to check whether a
certain sample satisfies the real model or not; a candidate query
is in order to decide whether the learned model is consistent
with the real model or not. With respect to ICE-learning[5], the
learner can only ask the candidate queries without membership
queries, which makes it hard and time-consuming to accept a
model or reject one. Actually, in order to perform candidate
check, the teacher has to call constraint solvers or equivalent
techniques each time. What if we can ask membership queries?

We integrate this active learning idea into our framework as
shown in Fig. 1. The learner can ask membership queries along
with candidacy queries, which makes most of the previous
time-consuming validation jobs reduce to several time-saving
tasks of program executions. As a result, the teacher can reject
wrong guesses easier and earlier, which makes each “guess and
check” round more slim, and therefore our learning framework
can defeat other approaches in speed.

C. State Chain

A typical program with one loop expression annotated with
precondition and post-condition can be formalized as:

assume P ; while B do S od; assert Q

The program has a precondition P , which should be sat-
isfied before entering the loop. Predicate B guards the loop
entry which is the only way towards the loop body S. The
goal is to prove that any state satisfying precondition should
satisfy also post-condition Q after execution of the loop. Given
a loop invariant I, we can prove that the assertion holds if the
following three properties are valid:

P ⇒ I (1)

{I ∧B}S{I} (2)

I ∧ ¬B ⇒ Q (3)

Good State, Bad State & Implication: [11] first instroduces
these three concepts. Let C be a candidate invariant.

From equation (1) we know, for an invariant I, any state
that satisfies P also satisfies I. We call any state that must be
satisfied by an actual invariant a good state.

Now consider equation (2). A pair (s, t) satisfies the prop-
erty that s satisfies B and if the execution of S is started in
state s then S can terminate in state t. Since an actual invariant
I is inductive, it should satisfy s ∈ I ⇒ t ∈ I. Hence, a pair
(s, t) satisfying s ∈ C ∧ t /∈ C proves C is not an invariant.

Finally, consider equation (3). The ‘existence of a state s ∈
C ∧ ¬B ∧ ¬Q proves C is inadequate to discharge the post-
condition. We call a state s which satisfies 6 B∧ 6 Q a bad
state.

Good State Chain, Bad State Chain & Implication Chain:
In our approach, we assume {s0, s1, s2, ..., si, ..., sn} is a
chain of states in the target program, where s0 is the initial
state before entering the loop, and si is a state just after
the loop has iterated i times in the program. We assume sn
satisfies ¬B so it is the state that can jump out the loop body.

For a state chain {s0, s1, s2, ..., si, ..., sn}, if s0 satisfies P ,
and sn satisfies Q, we say this is a good state chain. Because
if state s0 satisfy P , according to equation 1, s0 is a good
state that must satisfy I. Furthermore, according to equation
2, any state following s0 is a good state.

On the contrary, for a state chain {s0, s1, s2, ..., si, ..., sn},
if s0 satisfies ¬P , and sn satisfies ¬Q, we say this is a bad
state chain, any state in which should be a bad state. Because
if one of them is a good state, according to equation 2, all
the states behind it should be good too. But the fact is the
last state is a bad one. So this should not happen, and thus all
states in bad state chain are bad.

There are still two other tricky possibilities for an arbitrary
state chain we have not mentioned yet. One is a chain begins
with a state s0 that satisfies P but ends with a state sn
that satisfies ¬Q. It means there exists some inputs which
can pass the precondition but fails at the post-condition,
which are counter-examples to disprove the program. Then the
developers need to find out what bug causes this failure and
update the program, after which we can reapply our approach
to learn loop invariants. The other case is a chain begins with
a state s0 that satisfies ¬P but ends with a state sn that
satisfies Q. Under this condition, we could not justify whether
s0 and sn satisfy invariants or not, not to mention other states
{s1, s2, ..., si, ..., sn−1}. The only thing we can ensure is this
is an implication chain, which means if one state in the chain
is a good state, the states after it are too; but if one state is a
bad state, the state after it can either good or bad.

So in total, we can have table. I.

TABLE I
STATE CHAIN - INVARIANT TABLE

{s0, s1, ..., sn} sn |= Q sn |= ¬Q
so |= P good state chain counter example
s0 |= ¬P implication state chain bad state chain

In the previous approaches, the learner can get one good
state, one bad state or one implication pair in one program
execution. But in our framework, as shown in table. I, we
can get one state chain in the same program execution, which
offer the learner more samples to learn from. As a result,
with the sample information, the learner can learn an as good
invariant as, if not better than, the previous approaches. This
also implies our approach can converge faster than before.

D. Active Learning

With samples we get from program executions and inferred
labels information added, the learner can apply classification
algorithms from machine learning area, for instance, SVMs,
to divide samples with different labels apart. After getting a
classifier out, the learner can compute the most informative
samples in order to improve the classifier Intuitively, if we get
a wrong classifier, it is very likely that the predicted labels of
samples along with the classifier are wrong. So these points are
most valuable. The learner then invoke membership queries to
the teacher with some of these most informative points. Then
the teacher run the target program with these points to label
them based on Table. I. After returning to the learner these new

3

samples, the learner starts to learn a classifier again. If the new
learned classifier is identical with the previous one, we assume
this learning process gets converged. Otherwise, our approach
repeats the same procedure until classifier converges or the
number of interactions reaches a threshold for termination.

E. Invariants Check by Symbolic Execution

There is always a checking phase after invariant guessing
phase. Many existing approaches use a decision procedure
to validate the given candidacy. In our implementation, we
use KLEE[13] as an invariant verifier to help us validate
hypothesis invariants from the learner.

A simple KLEE program can be written as follows:

1 i n t x , y ;
2 k lee make symbo l i c (&x , s i z e o f (x) , ‘ ‘ x ’ ’) ;
3 k lee make symbo l i c (&y , s i z e o f (y) , ‘ ‘ y ’ ’) ;
4
5 k lee a s sume (x + y > 0) ;
6 x−−;
7 y ++;
8 k l e e a s s e r t (x + y > 0) ;

Listing 1. KLEE Example

After we compile the source to object file, we use KLEE
to perform symbolic execution on it. KLEE will enumerate
all the possible paths and emit concrete values for all the
symbolic variables to each path. Note that, for any program
ran by KLEE, if all the possible paths pass the assertion, we
can ensure the correctness of the program. In other words, we
have proved the correctness of the program.

With regards to this example, KLEE can find out there is
only one possible path with emitting a concrete input(x, y) =
(−1335664895,−811818755). As this only path passes asser-
tion, we have proved the correctness of the code fragment.

So after the learning process in last subsection, the learner
starts candidacy query with a good hypothesis invariant H. In
our approach, the teacher divides the target program into three
loop-free code parts to check whether the hypothesis invariant
H is an adequate inductive invariant. If not, the teacher offer
an example to help the learner in the next learning round.

With these feedbacks, the learner check whether the offered
example is a program counter-example. If yes, there are bugs
in program which need to be fixed by developers. Otherwise
the learning starts the next learning round. This will last until
the hypothesis passes all the three equations or the teacher
finds out a real counter-example to disprove the program.

F. Contributions and Future Work

The main contribution of this paper is to propose an new
loop invariant inference framework based on active learning. It
extends ICE-learning, but converge faster than the latter one.
We exploit one program execution to get a state chain rather
than one state or state-pair, and as a result, our approach can
get a more precise result from the same numbers of program
executions. Our approach adapts active learning rather than
passive learning. This enables the learner get a good enough
hypothesis before submitting a candidate query, as the teacher
can help the learner to focus on his fault as early as possible.

Another contribution is we use SVMs to do the learning.
Although we can only learn linear invariants for this moment,
we can generate more complex arithmetic invariants when pro-
jecting original samples to high dimensional spaces. But there
is no powerful verifier which can reasoning about complex
function straightly, so there is still a lot to do before proving.
We plan to use several linear inequalities to approximate the
complex curve, and then our framework could be powerful
enough to get most arithmetic invariants in theory.

II. AN EXAMPLE

This section shows you the exact steps how our framework
works on a simple example. Consider the C program in the
below. This program requires an invariant for its verification.

1 i n t x , y , xa , ya ;
2 assume (xa + 2 ∗ ya >= 0) ;
3 w h i l e (no nd e t ()) {
4 x = xa + 2 ∗ ya ;
5 y = −2 ∗ xa + ya ;
6 x ++;
7
8 i f (n ond e t ()) y = y + x ;
9 e l s e y = y − x ;

10
11 xa = x − 2 ∗ y ;
12 ya = 2 ∗ x + y ;
13 }
14 a s s e r t (xa + 2 ∗ ya >= 0) ;

Listing 2. Loop Example

A. Preprocessing

Before learning loop invariants, we need to prepare program
ready for recording program states. We apply a simple instru-
mentation to the target program source code in order to get
some information from program executions. In this step, we
record variables’ values in every loop iteration (which can be
viewed as a state chain when put together) and we can also be
aware of whether the first state satisfies the precondition and
the last state satisfies the post-condition or not by replacing
assume and assert functions (actually they are macros, not
functions) with our own implementation.

1 i n t x , y , xa , ya ;
2 > assume (xa + 2 ∗ ya >= 0) ;
3 w h i l e (no nd e t ()) {
4 + r e c o r d s a m p l e (xa , ya) ;
5 . . . / / p u t l oop body h e r e
6 }
7 + r e c o r d s a m p l e (xa , ya) ;
8 > a s s e r t (xa + 2 ∗ ya >= 0) ;

Listing 3. Loop Example after Instrumentation

B. Active learning using SVMs

This is the main step for invariant inference in our frame-
work. In this step, the teacher runs the target program with
inputs from random number generators or membership queries
submitted by the learner. Here for example, after running the
instrumented target program with four randomly generated
inputs (x, y) = (9,−7), (7, 1), (−9, 12), (−15, 6), the teacher

4

can provide four program state chains with their labels figured
out according to Table. I. The results are listed as follows:

• failP (9, -7) (54, -37) (233, -164) failQ [-]
• passP (7, 1) (16, 17) (183, 36) passQ [+]
• passP (-9, 12) (-76, 78) (-217, 311) passQ [+]
• failP (-15, 6) (-70, 30) (-367, 161) failQ [-]
With these state chains, the learner can apply linear SVMs to

learn a linear classifier to be regarded as a hypothesis invariant.
The hyper-plane H1 (with its margin) is shown in Fig. 2(a).

H1 : 0.156591 ∗ xa+ 0.289092 ∗ ya >= −0.385232

Then the learner checks whether any implication chain can
refute the hypothesis. As there is no implication chains gener-
ated by program executions so far, we can simply ignore this
checking step now.

Then the learner picks up some most informative points,
which lie on or near the invariant margin, to invoke member-
ship queries. Here for instance, the learner starts a membership
query with (x, y) = (−41, 24).

(a) H1 (b) H2 (c) H15

Fig. 2. Refining Visualization

Having membership queries from the learner, the teacher
execute the target program with inputs extracted from queries’
contents, and can easily get the following outputs:

• passP (-41, 24) (-220, 130) (-1017, 611) passQ [+]
With these new samples, the learner repeats to learn the

classifier again to get a better invariant hypothesis H2 as
shown in Fig. 2(b). As this process continues, the learner gains
more and more confidence with his hypothesis.

H2 : 0.172869 ∗ xa+ 0.360811 ∗ ya >= −0.570898

The learner then comes up with new membership queries
and the same procedure repeats until the hypothesis stays the
same or the iteration number exceeds the threshold we set
to force termination. Finally, the learner gets the hypothesis
invariant H15 he needs as shown in Fig. 2(c) :

H15 : 0.999835 ∗ xa+ 1.999670 ∗ ya >= −1.000000

This learning process described above is available as animation
by running the demo matlab script in the project root directory.

C. Validation by KLEE

As KLEE cannot deal with variables of double type by now,
we need to round-off the coefficients in our hypothesis H15

and convert into a simpler form as follows:

Hc : xa+ 2 ∗ ya >= −1

To validate hypothesis Hc, we divide the target program into
three separated parts based on their roles in loop expression:

1 / / Code P a r t 1 : B e f o r e Loop
2 k lee a s sume (xa + 2 ∗ ya >= 0) ; / / p r e c o n d i t i o n
3 k l e e a s s e r t (xa + 2 ∗ ya >= −1) ; / / hypo−i n v
4
5 / / Code P a r t 2 : Loop Body
6 k lee a s sume (xa + 2 ∗ ya >= −1) ; / / hypo−i n v
7 . . . / / p u t l oop bady h e r e . . .
8 k l e e a s s e r t (xa + 2 ∗ ya >= −1) ; / / hypo−i n v
9

10 / / Code P a r t 3 : A f t e r Loop
11 k lee a s sume (xa + 2 ∗ ya >= −1) ; / / hypo−i n v
12 k lee a s sume (xa + 2 ∗ ya >= 0) ; / / pos t−c o n d i t i o n

Listing 4. Validation by KLEE

By running KLEE on these three loop-free programs, we
find out the first program with no assertion failure, but the
second part fails when (xa, ya) = (−198640688, 492751876).

After executing the program with this concrete values as
initial inputs, we realize this is actually a counter-example:
it satisfies precondition, but fails at post-condition after exe-
cuting the loop body once. (The exact trace is the execution
chooses the else-branch, and fails at loop condition checking
and thus jumps out of the loop afterwards with (xa, ya) =
(580522691, 1676896317), and finally fails at post-condition
due to integer addition overflow exception). Hence, it becomes
developers’ job to locate and fix potential bugs with the help
of this emitting counter-example.

In a nutshell, after the preprocessing, learning and checking
phases, our framework finds out a counter-example which can
trigger the assertion failure in this illustrative example. With
this bug fixed, we can reapply our framework to prove program
correctness or find a new counter-example indicting a new bug.

REFERENCES

[1] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 1977, pp. 238–252.

[2] R. Sharma, A. V. Nori, and A. Aiken, “Interpolants as classifiers,” in
Computer Aided Verification. Springer, 2012, pp. 71–87.

[3] A. Albarghouthi and K. L. McMillan, “Beautiful interpolants,” in
Computer Aided Verification. Springer, 2013, pp. 313–329.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer aided verification.
Springer, 2000, pp. 154–169.

[5] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust
framework for learning invariants,” in Computer Aided Verification.
Springer, 2014, pp. 69–87.

[6] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants
using decision trees and implication counterexamples,” 2015.

[7] S. Krishna, C. Puhrsch, and T. Wies, “Learning invariants using decision
trees,” arXiv preprint arXiv:1501.04725, 2015.

[8] C. A. Furia, B. Meyer, and S. Velder, “Loop invariants: Analysis,
classification, and examples,” ACM Computing Surveys (CSUR), vol. 46,
no. 3, p. 34, 2014.

[9] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning:
An artificial intelligence approach. Springer Science & Business Media,
2013.

[10] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[11] R. Sharma and A. Aiken, “From invariant checking to invariant inference
using randomized search,” in Computer Aided Verification. Springer,
2014, pp. 88–105.

[12] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and computation, vol. 75, no. 2, pp. 87–106, 1987.

[13] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

