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Abstract. Digitization is a technique that has been widely used in real-time
model checking. With the assumption of digital clocks, symbolic model check-
ing techniques (like those based on BDDs) can be applied for real-time systems.
The problem of model checking real-time systems based on digitization is that
the number of tick transitions increases rapidly with the increment of clock up-
per bounds. In this paper, we propose to improve BDD-based verification for
real-time systems using simulation reduction. We show that simulation reduction
allows us to verify timed automata with large clock upper bounds and to converge
faster to the fixpoint. The presented approach is applied to reachability and LTL
verification for real-time systems. Finally, we compare our approach with existing
tools such as Rabbit, Uppaal, and CTAV and show that our approach outperforms
them and achieves a significant speedup.

1 Introduction
Timed automata are an extension of finite automata with clock variables which represent
timed constraints [3]. Interesting model checking problems of timed automata, like the
verification of the reachability and LTL properties, are shown to be decidable through
the construction of region graphs [3]. However, since the size of region graphs grows
exponentially with the number of clocks and the maximal clock constants, verification
based on region graphs is impractical.

There are two lines of works that are proposed to address this problem. The first line
of work is based on Difference Bound Matrix (DBM). DBM was proposed to represent
a set of clock valuations satisfying a set of convex clock constraints [19] with a zone
graph. The resulted zone graph is often much smaller than the region graph, which often
results in efficient verification timed automata models [15]. There are several problems
with DBM. First, it is difficult to verify LTL properties with non-Zeno assumption. A
run is called Zeno if there are infinite actions happening in finite time. Zeno runs are
unrealistic and therefore should be excluded during the system verification. However,
this process has shown to be fairly non-trivial [41]. Second, DBM cannot represent non-
convex zones. Some verification/reduction techniques for timed automata may result in
non-convex zones, and novel techniques need to be invented for handling such cases.
For instance, with a particular abstraction technique called LU abstraction [7], the re-
sulted zone can be non-convex. In such a case, a convex subset of LU abstraction, called
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Extra+
LU extrapolation [7], need to be used. Third, since locations and clock valuations

are stored separately in zone graphs, state space explosion is often encountered with
models having many processes.

The other line of work is based on digitization [29]. It replaces the continuous pas-
sage of time with a passage in discrete steps. The advantage of this approach is that,
it helps transforming the problem to model checking a discrete system and techniques
such as BDD-based symbolic model checking [16] can be leveraged. There are sev-
eral advantages of using BDD-based verification compared to DBM-based verification.
First, checking non-Zenoness with digitization and BDDs is almost trivial. Furthermore,
it has been shown to be outperformed zone-based approach in many existing works
(e.g., [15, 5, 9, 43, 12]). Second, we can store both locations and clock valuations to-
gether symbolically and does not have limitation with non-convex sets. However, the
problem with digitization and BDD-based approach is that it does not scale for large
clock constants. Large clock constants would increase significantly the number of tick
transitions which denote the passage of one time unit. As a result, a large number of
iterations are often necessary to completely explore the state space.

In this work, we propose the usage of LU simulation to address the aforementioned
problem. In particular, we propose two algorithms, based on LU simulation, for model
checking reachability and LTL properties respectively. A desired property of LU sim-
ulation is that it can be obtained for free in timed automata. Our algorithms depend on
two clock bounds that are – the maximal lower bound and the maximal upper bound
(LU bounds) [7]. By leveraging these clock bounds, we could explore the set of all
reachable states from initial states in fewer iterations. Intuitively, this is achieved in two
ways. First, during the verification, given a set of reachable states S encoded as BDD,
we actively enlarge it by adding states which can be simulated by those in S . Thus, we
have more states and it is possible to find all the reachable states with fewer iterations.
Second, according to LU simulation relation, states with the clock value greater than
the maximal lower bound can simulate all states with larger clock values. Therefore,
our method could perform well even if the maximal upper bound is very large.

In short, we make the following technical contributions in this work:

1. We have applied simulation reduction in a BDD efficient way for both reachability
and LTL properties. To the best knowledge of the authors, we are the first to apply
LU simulation relation in BDD-based approach model checking of timed automata.

2. We have shown the soundness and completeness pf our proposed algorithms. In ad-
dition, we further prove that for the algorithm on verifying reachability properties,
our approach always requires the same or fewer iterations than classic approaches.

3. We have compared our approaches on verifying reachability and LTL properties
with state-of-the-art DBM-based and BDD-based model checkers, e.g., Uppaal [30]
and Rabbit [10] on benchmark systems. The results show that our approach achieves
a significant speed up and outperforms other tools.

Related Work On the effort of improving reachability analysis of timed automata,
this work is related to studies on the abstraction techniques to reduce states number in
zone graphs, such as [33, 13, 7, 26]. The idea is to enlarge a DBM without violating
the correctness. This work continues the research on using BDDs and BDD-like data
structures to improve the verification of real-time systems [15, 5, 8, 9, 43, 12, 44, 38].
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This work is related to the research on simulation reduction (e.g., [20, 21]) as well
as research on the emptiness checking of Timed Büchi Automata (TBA). Note that LTL
verification on timed automata can be converted to the emptiness checking of TBA.
In [41], Tripakis discovered that it is non-trivial to check whether a run in a zone graph
can induce a non-Zeno run in the original TBA. The proposed remedy is to transform a
TBA to an equivalent strongly non-Zeno TBA so that algorithms for emptiness check-
ing of Büchi automata can be used to solve the emptiness problem of TBA. In [42],
Tripakis questioned whether coarser extrapolation techniques, specifically inclusion ab-
straction [18] and LU extrapolation [7], can also be used to check TBA emptiness.
In [28], Laarman et al. showed that inclusion abstraction only preserves the emptiness
of TBA in one direction. In [31], Li showed that LU extrapolation indeed preserves
the emptiness of TBA. One result of this work is an improved algorithm of solving the
non-emptiness problem based on BDDs.

This work is closely related to [7], [31] and work on using downward closure [21]
based on LU simulation relation as an abstraction. While [7] and [31] both apply LU
simulation relation to DBMs (Extra+

LU extrapolation) for reachability analysis and
emptiness checking respectively, we apply the LU simulation relation to BDDs for both
reachability and emptiness. There are two advantages of our approach. First, given a
convex set of clock valuations, Extra+

LU is a subset of LU abstraction. Our approach
based on LU abstraction can be more efficient than Extra+

LU [26, 21], because a BDD
can represent a non-convex set of clock valuations. Second, to handle the non-Zeno
condition, [31] relies on the strongly non-Zeno transformation, which requires an addi-
tional clock and may result in a zone graph with exponentially more states [25, 24].

Organization The rest of the paper is organized as follows. Section 2 introduces
timed automata and the LU simulation relation in timed automata. Section 3 presents
our work on the reachability analysis. Then, Section 4 presents our work on the LTL
verification. Next, Section 5 shows the experimental results. Section 6 discusses our
work. Finally, Section 7 concludes our paper.

2 Preliminaries
2.1 Timed Automata
In this section, we introduce timed automata, arguably one the most popular modeling
languages for real-time systems. We denote the finite alphabet by Σ. Let R≥0 be the
set of non-negative real numbers. Let X be the set of non-negative real variables called
clocks. The set Φ(X ) contains all clock constraints δ defined inductively by the gram-
mar : δ := x ∼ c | x − y ∼ c | δ ∧ δ where x , y ∈ X , ∼∈ {<,≤,=,≥, >}, and
c ∈ N. Given a set of clocks X , a clock valuation v : X → R≥0 is a function which
assigns a non-negative real value to each clock in X . We denote R|X |≥0 the set of clock
valuations over X . A clock valuation v satisfies a clock constraint δ, written as v |= δ,
if and only if δ evaluates to true using the clock values given by v . We denote by 0
the clock valuation that assigns every clock the value 0. Given a clock valuation v and
d ∈ R≥0, the clock valuation v ′ = v + d is defined as v ′(x ) = v(x ) + d for all clocks
x in X . For R ⊆ X , let [R 7→ 0]v denote the clock valuation v ′ such that v ′(x ) = v(x )
for all x ∈ X \ R and v ′(x ) = 0 for all x ∈ R.

Definition 1. A timed automaton is a tuple A = (Σ,X ,L, l0,T , I ) where
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– Σ is the finite alphabet, X is the set of clock variables.
– L is the set of locations, l0 ∈ L is the initial location.
– T ⊆ L×Φ(X )×Σ× 2X ×L is the set of transitions (l , g , e,R, l ′) where l and l ′

are the source and destination locations of this transition respectively, g ∈ Φ(X )
is a guard, e ∈ Σ is an event name, and R ⊆ X is a set of resetting clocks.

– I : L→ Φ(X ) assigns invariants to locations.

The (continuous) semantics of a timed automaton A = (Σ,X ,L, l0,T , I ) is a transition
system CS (A) = (S , s0,→) where S = L × R|X |≥0 is a set of states, s0 = (l0, 0) is the
initial state, and→ is the smallest labeled transition relation satisfying the following:

– Delay transition: (l , v) d−→ (l , v + d) if ∀ 0 ≤ d ′ ≤ d , v + d ′ |= I (l)

– Action transition: (l , v) t−→ (l ′, v ′) with t = (g , e,R) if there exists (l , g , e,R, l ′) ∈
T such that v |= g , v ′ = [R 7→ 0]v , and v ′ |= I (l ′)

We write (l , v)
d−→ t−→ (l ′, v ′) if there exists (l1, v1) where (l , v)

d−→ (l1, v1) and

(l1, v1)
t−→ (l ′, v ′). A run of A is a sequence (l0, v0)

d0−→ t0−→ (l1, v1)
d1−→ t1−→ · · · . A state

(ln , vn) is reachable from (l0, v0) if there is a run starting from (l0, v0) and ending at
(ln , vn). The duration of the run is defined as the total delay over this run,

∑
i≥0 di . A

run is called Zeno if there are infinite actions happening in finite time. Given a timed
automaton A = (Σ,X ,L, l0,T , I ) and a location l ∈ L, reachability analysis is to
decide whether a given state (l , v) is reachable from the initial state (l0, 0). Next, we
define the emptiness checking problem for timed automata. Let Acc ⊆ L be the set of
accepting locations. An accepting run of A is a run which visits a state in Acc infinitely
often. The language of A over Acc, L(A), is defined as the set of accepting non-Zeno
runs. The emptiness problem is to determine whether L(A) is empty, i.e., whether there
exists an infinite run which is non-Zeno and accepting. We remark that reachability
analysis is often used to verify safety problem, whereas algorithms for the emptiness
checking problem can often be extended to verify liveness properties like LTL formulae.

In the above semantics, clock values are continuous and events are observed at real
time points. Thus, the number of states is infinite and BDDs can not be applied to verify
timed automata under this semantics. In the following, we introduce discrete semantics
which is based on the assumption that events are observed at integer time points only.

2.2 Discrete Semantics
In discrete semantics, we assume that clock constraints are always closed, i.e., defined
by δc := x ∼c c | x − y ∼c c | δc ∧ δc where x , y ∈ X , ∼c∈ {≤,=,≥}, and c ∈ N.
Timed automata with closed constraints are called closed timed automata [5, 23].

Given any clock x ∈ X , we write M (x ) to denote the maximal constant to which x
is compared in any clock constraint of A. Given a clock valuation v , v ⊕ d denotes the
clock valuation where (v ⊕ d)(x ) = min(v(x ) + d ,M (x ) + 1). Intuitively, for each
clock x , once the clock value is greater than its maximal constant M (x ), its exact value
is no longer important, but the fact v(x ) > M (x ) matters.

The discrete semantics of a closed timed automaton A = (Σ,X ,L, l0,T , I ) is a
transition system DS (A) = (S , s0,→) where S = L × N|X | is a set of states, s0 =
(l0, 0) is the initial state, and→ is the smallest labeled transition relation satisfying the
following condition:
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– Tick transition: (l , v) tick−−→ (l , v ⊕ 1) if v |= I (l) and v ⊕ 1 |= I (l)

– Action transition: (l , v) t−→ (l ′, v ′) with t = (g , e,R) if there exists (l , g , e,R, l ′) ∈
T such that v |= g , v ′ = [R 7→ 0]v , and v ′ |= I (l ′)

It was shown that the discrete semantics preserves untimed properties of closed
timed automata [5, 23]. Thus, DS (A) can be used in place of CS (A) in the verification
of untimed properties like untimed reachability analysis and untimed LTL verification.
It follows that BDDs can be used to encode and verify the closed timed automata based
on the discrete semantics. In this work, we adopt the approach presented in [35, 9] to
encode DS (A) in BDD. Given a timed automaton A = (Σ,X ,L, l0,T , I ), we denote
Init , Tick , and Trans the BDD encodings of the initial states, tick transitions, and
action transitions of DS (A) respectively. Note that the encoding of the transition re-
lation of DS (A) is the disjunction of Tick and Trans . The tick transitions and action
transitions are encoded separately for efficiency. The details are discussed in Section 3.

2.3 Simulation Relation
Since our model checking algorithms use the simulation relation, we introduce the sim-
ulation relation over timed automata in the following.

Definition 2. Given a timed automaton A, a (location-based) simulation relation over
states of CS (A) is a binary relationR ⊆ S×S such that for all ((l1, v1), (l2, v2)) ∈ R,
it holds that:

– l1 = l2

– if (l1, v1)
d−→ (l1, v1+ d) then there exists d ′ such that (l2, v2)

d′

−→ (l2, v2+ d ′) and
((l1, v1 + d), (l2, v2 + d ′)) ∈ R.

– if (l1, v1)
t−→ (l ′1, v

′
1) then there exists (l ′2, v

′
2) such that (l2, v2)

t−→ (l ′2, v
′
2) and

((l ′1, v
′
1), (l

′
2, v
′
2)) ∈ R.

A state (l1, v1) is simulated by another state (l2, v2), or equivalently (l2, v2) simulates
(l1, v1)), denoted as (l1, v1) 4 (l2, v2), if there exists a simulation relation R such that
((l1, v1), (l2, v2)) ∈ R. By definition, any state simulates itself. Given a set of states
Q ⊆ S , we define the downward closure [21] as Down(Q) = {s1 ∈ S | ∃ s2 ∈
Q .s1 4 s2}. Intuitively, the downward closure of Q is the set of states which can
be simulated by a state in Q . Since the simulation relation is reflexive, it follows that
Q ⊆ Down(Q).

For timed automata, it is known that there exists a simulation relation called the
LU simulation relation [7]. Given a clock x , maximal lower bound L(x ) (respectively
maximal upper bound U (x )) is the maximal constant k for which there exists a con-
straint x > k or x ≥ k (respectively x < k or x ≤ k ) in the timed automaton. If
the maximal constant k does not exist, we set L(x ) (respectively U (x )) to −∞. Then,
given two clock valuations v and v ′, we denote v 4 v ′ if for all clocks x ∈ X , either
v ′(x ) = v(x ) or L(x ) < v ′(x ) < v(x ) or U (x ) < v(x ) < v ′(x ). It shows the relation
RCS = {((l , v), (l , v ′)) | v 4 v ′} is a simulation relation based on CS (A) [7]. The
following proposition shows that it is also a simulation relation based on DS (A).

Proposition 1. The relation R = {((l , v), (l , v ′)) | v , v ′ ∈ N|X | ∧ v 4 v ′} is a
simulation relation of DS(A).
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The proof is the same as Lemma 3 in [7]. For simplicity, we denote 4 the BDD encoding
of the simulation relationR defined in Proposition 1.

Algorithm 1: Reachability Analysis

1: function
IsReach(Init ,Tick ,Trans, goal )

2: Qp = ∅
3: Q = Init
4: Q = Reach(Q ,Trans)
5: while (Qp 6= Q) do
6: Qp = Q
7: Q=Q∪Reach(

succ(Q ,Tick),Trans)
8: if Q ∩ goal 6= ∅ then
9: return true

10: end if
11: end while
12: return false
13: end function
14:
15: function Reach(Q ,R)
16: Qp = ∅
17: while (Qp 6= Q) do
18: Qp = Q
19: Q = Q ∪ succ(Q ,R)
20: end while
21: return Q
22: end function

Algorithm 2: Reachability Analysis with
Simulation

1: function
IsReachsim (Init ,Tick ,Trans, goal )

2: Qp = ∅
3: Q = Down(Init)
4: Q = Reachsim(Q ,Trans)
5: while (Qp 6= Q) do
6: Qp = Q
7: Q=Q∪Reachsim

(Down(succ(Q ,Tick)),Trans)
8: if Q ∩ goal 6= ∅ then
9: return true

10: end if
11: end while
12: return false
13: end function
14:
15: function Reachsim (Q ,R)
16: Qp = ∅
17: while (Qp 6= Q) do
18: Qp = Q
19: Q = Q ∪Down(succ(Q ,R))
20: end while
21: return Q
22: end function

3 Reachability Analysis Algorithm
In this section, we present the reachability analysis algorithm without the simulation
reduction and the one with the reduction.

3.1 Algorithm without Simulation Reduction
Given a set of states goal , the reachability analysis is performed by computing the set of
reachable states and checking whether this set contains some states belonging to goal .
The problem of efficiently computing the set of reachable states in BDDs for timed
systems has been investigated by Beyer in [11, 9]. There are two important observations
to avoid exploding the BDD. First, separating action transitions and tick transitions
is more efficient than using the union of these transitions as monolithic transitions.
Second, to compute the fixpoint, using action transitions before applying tick transitions
is successful to achieve smaller encodings of intermediate reachable states.

Algorithm 1 shows the reachability analysis algorithm based on Beyer’s observa-
tions, without simulation reduction. The function IsReach takes Init , Tick , Trans ,
and goal as input. It checks whether a state in goal is reachable from an initial state in
Init by transitions in Tick or Trans . Moreover, given a set of states Q and a transition
relation R, the utility function Reach(Q ,R) computes the set of states reachable from
Q by transitions in R. We denote by succ(Q ,R) (or simply succ(Q) if the transition
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Fig. 1: Timed automaton with large clock constant and the transition system based on
discrete semantics

relation R is clear from the context) the set of successor states of Q . Intuitively speak-
ing, after the i th loop (lines 5-11) iteration , Q stores the set of states reachable within i
time units. The algorithm reaches the fixpoint if no new state is found in next time unit.

While Algorithm 1 is relatively efficient in computing the reachable states, it still
suffers from large maximal clock constants. Models with large maximal clock constants
require a large number of iterations to obtain the fixpoint. Figure 1a presents a timed au-
tomaton with large clock constant, i.e., with a maximal clock constant 106. We remark
that in practice, large clock constants are not uncommon because different time units are
often used in the same time. Figure 1b is the transition system generated by the discrete
semantics. States whose location is l2 are ignored in Figure 1b for simplicity. We denote
(li , j ) the state where the location is li and the clock valuation v such that v(x ) = j .
Assume the property is whether location l2 is reachable. Then, Algorithm 1 requires
106 + 2 iterations to reach the fixpoint to conclude that l2 is unreachable. Specifically,
106 + 1 iterations to find all the reachable states and the last iteration does not find any
new state and concludes that the fixpoint is reached. On the contrary, with simulation
reduction, our approach can verify whether l2 is reachable within 3 iterations.

In the next section, we present our improved algorithm by using the simulation
relation. We prove that the number of iterations can be reduced, and experimental results
given in Section 5 confirm that our improved algorithm is much more efficient.
3.2 Algorithm with Simulation Reduction
In this section, we present our improved reachability analysis algorithm. Given a tran-
sition system L, a simulation relation 4 over states of L and a set of states goal , our
algorithm determines whether any state in goal is reachable. The reachability analy-
sis is performed similarly as Algorithm 1 by computing the set of reachable states and
checking whether this set contains some state in goal .

We assume that the simulation on L is compatible with the set goal , i.e., for any
(s1, s2) ∈4, s1 ∈ goal ⇒ s2 ∈ goal . In our reachability verification for timed au-
tomata, the LU simulation relation satisfies this condition because the reachability ver-
ification is over locations. Effectively, with simulation reduction, we would explore a
reduced transition system defined as Def. 3.

Definition 3. Given the transition system L = (C , initc ,→) and the simulation rela-
tion 4, we define the transition system L′ = (C ′, init ′c ,⇒) such that:

– C ′ = C , init ′c = Down(initc)
– Given any state s ′1, s

′
2 ∈ L′, there is a transition s ′1 ⇒ s ′2 in L′ if there exists a

transition s ′1 → s2 in L and s ′2 4 s2.
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Note that the state space is unchanged. The initial states and transition functions are
changed accordingly the simulation relation over the set of states C . Intuitively, for any
transition s ′1 → s2 in L, we allow other states simulated by s2 to be successor states of
s ′1 in L′. Thus, given a set of states Q ⊆ C , succ(Q ,⇒) = Down(succ(Q ,→)). In
the following, we establish that L′ preserves the reachability. For the sake of space, the
proofs are presented in [2].

Lemma 1. Given q ′1 4 q1, if there exists a path of length n , q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′n in
L′, there exists a path of length n , q1 → q2 → · · · qn in L such that q ′i 4 qi for all
1 ≤ i ≤ n . 2

Theorem 1. Given the transition systems L, L′, and a set of states goal , goal is reach-
able in L if and only if goal is reachable in L′. 2

Theorem 1 provides the relationship between transition systems L and L′. Based on
Theorem 1, we can use the transition system L′ as the input for Algorithm 1. How-
ever, explicitly computing the transition relation of L′ is computationally expensive.
Instead, we apply Down to the result of any call succ(Q) on the fly in Algorithm 1 be-
cause succ(Q ,⇒) = Down(succ(Q ,→)). Algorithm 2 presents our improved reach-
ability analysis algorithm with simulation reduction. We rename the two functions as
IsReachsim and Reachsim respectively. The difference between Algorithm 2 and Al-
gorithm 1 is that in the function IsReachsim , we first update Q = Down(Init) at
line 3, and subsequently, we call Reachsim(Q ,R) and Down(succ(Q ,R)) instead of
Reach(Q ,R) and succ(Q ,R) respectively. It can be observed that we always apply
Down to the results of the succ function.

Theorem 2. Algorithm 2 is sound and complete. 2

Proof: As we discussed the difference between Algorithm 2 and Algorithm 1, given
a transition system L, while the function IsReach(Init ,Tick ,Trans, g) checks the
reachability of g on L, the function IsReachsim(Init ,Tick ,Trans, g) actually checks
the reachability of g on L′. Thus, the correctness of Algorithm 2 is obtained based on
Theorem 1 and the correctness of Algorithm 1.

Our algorithm is similar to the algorithm of antichain of promising states [21]. Note
that in [21], the algorithm uses the Min operator while our approach uses Down oper-
ator. The reason that our algorithm uses Down operator is that it is efficient to compute
in BDD. This algorithm is also similar to the one in [7], where LU simulation is used to
improve zone-based verification of timed automata. However, the Down operator here
is coarser than extrapolation used in [7] (since for efficiency reasons, any extrapolation
must result in convex zones).

Lemma 2. Assume Q ′ = Down(Q), Q ′∪Reachsim(Down(succ(Q ′,Tick)),Trans) =
Down(Q ∪ Reach(succ(Q ,Tick),Trans)).

Lemma 3. Assume Q ′ = Down(Q), after n iterations, if Reach(Q ,R) reaches the
fixpoint, Reachsim(Q ′,R) also reaches the fixpoint. Moreover the results of those func-
tions satisfy Reachsim(Q ′,R) = Down(Reach(Q ,R)).

Since the reachability analysis requires a lot of fixpoint computations, the rationale
of Algorithm 2 is to converge faster to the fixpoint. In the following, we prove that
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Reachsim(Down(Q)) requires the same or smaller number of iterations to reach the
fixpoint than Reach(Q). In our proof, to distinguish with Algorithm 1, given any vari-
able Q appearing in in Algorithm 2, we use the prime version Q ′ to denote that variable
in Algorithm 2.

Theorem 3. Algorithm 2 requires less or the same number of iterations than Algo-
rithm 1.

Proof: By Lemmas 2 and 3, in Algorithms 1 and 2, Q ′ = Down(Q) holds. Thus, if
Algorithm 1 terminates when Q ∩ goal 6= ∅, Algorithm 2 also terminates because
Q ′ ∩ goal 6= ∅. Otherwise if Q = Qp holds in Algorithm 1, Q ′ = Q ′p also holds in
Algorithm 2. Example. In the following, we demonstrate how Algorithm 2 works using
the example in Figure 1. The reachability problem is to check whether l2 is reachable
from the initial state l0. According to timed automaton, we have L(x ) = 1 and U (x ) =
106. Algorithm 2 only takes 3 iterations to verify l2 is unreachable, specifically:

– Q ′0 = {(l0, 0)}
– Q ′1 = {(l0, 0), (l0, 1), (l1, 1)}
– Q ′2 = {(l0, i) | 0 ≤ i ≤ 106 + 1} ∪ {(l1, i) | 1 ≤ i ≤ 106 + 1}
– Q ′3 = Q ′2

Note that in the 2nd iteration, at first we have (l0, 2), (l1, 2) ∈ Q ′2. Since (l0, i) 4 (l0, 2)
and (l1, i) 4 (l1, 2) for all i > 2, we add all states (l0, i) and (l1, i) where i > 2 to Q ′2
by the Down function. Thus, finally Q ′2 = {(l0, i) | 0 ≤ i ≤ 106 + 1} ∪ {(l1, i) | 1 ≤
i ≤ 106 + 1}.

In this section, we have presented our improved algorithm for reachability verifica-
tion by using the LU simulation relation. We prove that our approach in Algorithm 2
always uses less or the same number of iterations compared with the classic algorithm
as in Algorithm 1. In the next section, we continue with presenting our improved empti-
ness checking algorithm with the simulation relation.

Algorithm 3: Algorithm IsEmpty

1: function IsEmpty(Init ,Tr , J )
2: old = ∅
3: . Empty line for comparision with

Algorithm 4
4: new = Reach(Init ,Tr)
5: while (new 6= old ) do
6: old = new
7: for all Ji ∈ J do
8: new=Reach(new∩Ji ,Tr)
9: end for

10: while (new 6=(new∩
11: succ(new))) do
12: new=(new∩succ(new))
13: end while
14: end while
15: return (new = ∅)
16: end function

Algorithm 4: Algorithm IsEmptysim

1: function IsEmptysim (Init ,Tr , J )
2: old = ∅
3: Init = Down(Init)
4: new = Reachsim(Init ,Tr)
5: while (new 6= old ) do
6: old = new
7: for all Ji ∈ J do
8: new=Reachsim(new∩Ji ,Tr)
9: end for

10: while (new 6=(new
11: ∩Down(succ(new)))) do
12: new=(new∩Down(succ(new)))
13: end while
14: end while
15: return (new = ∅)
16: end function



10

4 Emptiness Checking Algorithm
Under digitization and automata theory, LTL verification can be done by emptiness
checking. Thus, the emptiness checking algorithm of Kesten et al. [27] can be used. In
this section, we fist present the algorithm of Kesten. Then, we introduce our improved
algorithm by using the simulation relation.
4.1 Algorithm without Simulation Reduction
Given a transition system and a set of Büchi conditions J where Ji ∈ J is a set of
states, an accepting run is an infinite run which visits a Ji -state (a state in Ji ) infinitely
often for all Ji ∈ J . The emptiness problem is to check whether this run exists.

For simplicity, in this section, we merge Trans and Tick and assume that Tr is
the encoding of the whole transition system. Algorithm 3 [27] presents the symbolic
emptiness checking algorithm. Specifically, function IsEmpty takes the set of the initial
states Init , the transition relation Tr , and a set of Büchi conditions J as input.

In Algorithm 3, function IsEmpty searches for an accepting strongly connected
component (SCC) which contains a Ji -state for every Büchi condition Ji ∈ J . The
algorithm computes the set of all reachable accepting SCCs. If this set is empty, there is
no accepting run in the given transition system. At line 4, new is assigned as the set of
all reachable states from the initial states. Then, the while-loop (from line 5 to line 14)
continuously refines the set of states new until a fixpoint is reached (i.e., new = old at
line 5). Inside this while-loop, first, we backup the current value of new in old (line 6).
Then, from line 7 to line 9, we continue to refine new as the set of states reachable by
a Ji -state for all Ji ∈ J . Next, in the inner while-loop from line 11 to line 13, we again
refine new by successively removing from new states which do not have a predecessor
in new (line 12). This loop is iterated until new is closed under predecessor. Thus, new
is the set of all reachable SCCs. Because of the loop from line 7 to line 9, those SCCs
are accepting by containg a state in Ji for all Ji ∈ J . At the end, new contains all
reachable accepting SCCs in this transition system.
4.2 Algorithm with Simulation Reduction
In this section, we present our improved emptiness checking algorithm of timed au-
tomata Algorithm 4, which improves Algorithm 3 by using the simulation relation.
We rename the function as IsEmptysim . The difference between Algorithm 4 and Al-
gorithm 3 is that in the function IsEmptysim , at the beginning, we update Init =
Down(Init) at line 3, and throughout the algorithm, we call the functions Reachsim(Q ,Tr)
and Down(succ(Q)) instead of Reach(Q ,Tr) and succ(Q), respectively. Note that the
function Reachsim(Q ,Tr) is introduced in Section 3. In other words, we always apply
the function Down on the results of the succ function. We prove that Algorithm 4 is
sound and complete as we did for Algorithm 3. First, we prove that L′ (defined in Def-
inition 3) also preserves the emptiness.

Lemma 4. Given q ′1 4 q1, if there exists a path of length n , q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′n in
L′, there exists a path of length n , q1 → q2 → · · · qn in L such that q ′i 4 qi for all
1 ≤ i ≤ n .

Lemma 5. Given q ′1 4 q1, if there exists a cycle q ′1 ⇒ · · · ⇒ q ′1 in L′ which contains
a Ji -state for all Ji ∈ J , there exists a cycle q1 → · · · → q1 in L which contains a
Ji -state for all Ji ∈ J .

Lemma 6. If there exists an accepting run in L′, there exists an accepting run in L.
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Theorem 4. Given a transition system L, a set of Büchi conditions J , and a simulation
relation 4 over states of L, L has an accepting run if and only if L′ has an accepting
run.

Following Theorem 4, we can use the transition system L′ as the input for Algo-
rithm 3. However, explicitly computing the transition relation of L′ is not efficient.
Instead, we apply Down for the result of any call succ(Q) on the fly in Algorithm 3
because of the fact that succ(Q ,⇒) = Down(succ(Q ,→)).

Theorem 5. Algorithm 4 is sound and complete.
Proof: As we discussed the difference between Algorithm 4 and Algorithm 3, given
a transition system L with a set of initial states Init , the transition relation Tr and a
set of Büchi conditions J , while IsEmpty(Init ,Tr , J ) is checking the emptiness of
L, IsEmptysim(Init ,Tr , J ) is actually checking the emptiness of the transition system
L′. Thus, the correctness of Algorithm 4 is obtained based on Theorem 4. 2

Algorithm 4 does not guarantee that it always takes less or the same number of iter-
ations than Algorithm 3. To distinguish between Algorithms 4 and 3, we use new ′ and
new to denote the variable new in Algorithm 4 and Algorithm 3 respectively. Then,
the reason that Algorithm 4 might take more iterations is new ′ = Down(new) is not
an invariant during the algorithm. Assume before executing the line 12, it holds that
new ′ = Down(new), then new ′ = Down(new) may not hold after this line is exe-
cuted as shown in Lemma 8 in [2]. Thus, new ′ = Down(new) is not an invariant. Nev-
ertheless, in our evaluation in Section 5, Algorithm 4 always outperforms Algorithm 3
and takes less number of succ function calls. The reason is that during the computation
of all reachable states from initial states at line 4 and the first run of the while-loop in
lines 7-9, Algorithm 4 can take much lesser number of succ function calls than Algo-
rithm 3 as the result of Theorem 3 and Lemma 7 in [2]. Moreover, the computation of
all reachable states (line 4) is the most expensive computation in these algorithms.

Algorithm 4 can be adopted to verify the emptiness of TBA straightforwardly. The
requirement that the run must visit an accepting location infinite times and contain an
infinite number of tick transitions and action transitions is represented as a set of Büchi
conditions J = {Acc, J0, J1} where Acc is a set of accepting locations in DS (A) and
J0 (respectively J1) is the set of states which are the destination states of the action
transition (respectively tick transition). A boolean variable isTick can be introduced
during the encoding. For each transition, this variable is updated to false if that is an
action transition. Otherwise it is updated to true. Then J0 is the set of states where
isTick is false and J1 is the set of states where isTick is true.

We have presented our approach on using the LU simulation relation on the verifi-
cation of reachability and LTL properties. We evaluate both algorithms next.

5 Evaluation
We conducted experiments to evaluate our approach. Specifically, we attempted to an-
swer the following research questions:
RQ1: How is the improvement in the number of iterations and verification time of our
methods, compared to the existing state-of-the-art BDD-based and DBM-based meth-
ods, in checking reachability and LTL properties?
RQ2: How scalable is our method in size of maximal clock constants and processes?
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Table 1: Experimental results in the reachability verification with increasing clock con-
stants

PAT-Sim PAT-NonSim Rabbit
MCC #Succ Time Memory #Succ Time Memory Time

CSMACD 808 4,369 6 34 17,794 1,563 577 208
CSMACD 1,616 8,721 36 59 - oot - 1,494
CSMACD 3,232 17,425 228 181 - - - oot
Fischer 256 796 14 73 2,838 1,033 1,089 58
Fischer 512 1,564 112 252 - - oom 1,076
Fischer 1,024 3,100 867 931 - - - oom
Lynch 64 481 12 66 1,347 217 498 256
Lynch 128 929 104 287 2,627 2,163 1,562 oot
Lynch 256 1,825 859 1,003 - - oom oom

Our approach has been implemented as a BDD library for the reachability and LTL
verification of timed automata in the PAT framework [40]. Our implementation is based
on the CUDD package [39], which is a package that provides functions to manipulate
BDDs. All of the experiments are performed on a PC with Intel Core i7-2600 CPU at
3.4GHz and 4GB RAM.

To answer the research questions, we have conducted four experiments, and the re-
sults are shown in Tables 1-4. For all experiments, we measure the number of succ
function calls (#Succ), the verification time (in seconds) (Time), and the memory us-
age of CUDD library (in MB) (Memory) over three benchmark systems from [1, 15,
34]: CSMACD protocol, Fischer’s protocol, and Lynch-Shavit protocol. We run PAT in
two settings, i.e., with and without simulation, which are referred to as PAT-Sim and
PAT-NonSim. The algorithms for PAT-Sim (PAT-NonSim resp.) on verifying reachabil-
ity and LTL properties are given in Algorithms 2 and 4 (Algorithms 1 and 3 resp.).

All experiments are conducted with a time limit of 2 CPU hours. An entry ‘oot’
in the table means that the time limit is reached, and an entry ‘oom’ means that the
program runs out of memory. Given a benchmark system, when a smaller model is
running out of time or memory, we omit the evaluation of larger models. An entry ‘-’
means the information is unavailable.

We compare the results to three state-of-the-art model checkers, i.e., DBM-based
model checker Uppaal [30] and CTAV [31], as well as BDD-based model checker Rab-
bit [10]. Although RED [43] and BDD-based version of Kronos [14] are related to our
work as real time verification tools using BDD (BDD-like) data structure, Rabbit was
shown to outperform them [10]. Therefore, only Rabbit is used in our experiments.
5.1 Evaluation for Reachability Properties
We evaluate our approach with Rabbit and Uppaal in the verification of reachability
properties. Since our approach is digitization-based, naturally, the first question is how
well the library scales with the number of clock ticks. In the first experiment (cf. Ta-
ble 1), we exponentially increase the maximal clock constants while keeping the num-
ber of processes constant (we set it 4). Since Uppaal is a DBM-based model checker,
its performance does not depend on the maximal clock constants; therefore, it is not
used in the experiment. The column MCC is the maximal clock constant values in the
corresponding models. Compared to PAT-NonSim, PAT-Sim takes smaller number of
succ function calls which can be reduced from 2 to 4 times by using simulation. Com-
pared to Rabbit, PAT-Sim achieves a speedup from 2 to 21 times, and there are five
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Table 2: Experimental results in the reachability verification with increasing number of
processes

PAT-Sim PAT-NonSim Rabbit Uppaal

#Proc #Succ Time Memory #Succ Time Memory Time Time

CSMACD 16 7,377 62 85 - oot - 5,638 oom

CSMACD 32 14,289 453 187 - - - oot -

CSMACD 64 26,801 3,912 477 - - - - -

Fischer 8 308 52 482 - oot - 7,258 0.7

Fischer 16 356 366 1,442 - - - oom oom

Fischer 32 452 3,351 1,651 - - - - -

Lynch 8 169 8 72 696 6,203 1,690 2,494 1.1

Lynch 16 217 104 290 - - oom oom oom

Lynch 32 313 2,971 1,201 - - - - -

cases where Rabbit runs out of memory or time. As a result, PAT-Sim outperforms both
PAT-NonSim and Rabbit and can handle larger maximal clock constants.

In the second experiment (cf. Table 2), we compare PAT, Rabbit, and Uppaal using
the same benchmark systems. The column #Proc represents the number of processes.
In this experiment, we set the maximal clock constants to 64 in Fischer protocol, 16 in
Lynch-Shavit protocol, and 404 in CSMACD protocol. Then, we increase the number
of processes in each benchmark system to find out which tool can verify the most num-
ber of processes. By using simulation, the number of succ function calls is reduced.
Thus, PAT-Sim is faster and can handle larger number of processes compared to PAT-
NonSim. For example, in the Lynch model with 8 processes, PAT-Sim requires 169 succ
function calls and takes 8 seconds, while PAT-NonSim requires 696 succ function calls
and takes 6,203 seconds. The verification time is thus reduced significantly. According
to Table 2, PAT-Sim also outperforms Rabbit and Uppaal. Although Uppaal achieves
shorter evaluation time in smaller number of processes, both Rabbit and Uppaal easily
run out of memory or time when the number of processes increases. On the contrary,
PAT-Sim can still verify models while both other tools are out of memory or time, for
example, 64 processes in the CSMACD benchmark.
5.2 Evaluation for LTL Properties
We evaluate our approach with CTAV in the verification of LTL properties under non-
Zeno condition. Note that we do not compare with Uppaal since Uppaal does not sup-
port the verification of LTL properties under non-Zeno condition. In the third experi-
ment (cf. Table 3), to demonstrate the efficiency of our approach in the handling of large
maximal clock constants, we fix the number of processes at 4 and increase the maxi-
mal clock constants. We do not compare with CTAV since it is a DBM-based model
checker and its performance is not affected by maximal clock constants. According to
the results, by using the LU simulation relation, the number of succ function calls is
reduced significantly. For example, in the Lynch protocol with MCC = 200, the num-
ber of succ calls is reduced from 19,682 to 6,937. As a result, the verification time is
improved significantly, from 2,404s to 25s.

PAT-Sim outperforms PAT-NonSim on all the models. It is faster and uses less mem-
ory. Thus, it can handle models with maximal clock constants up to thousands.

In the fourth experiment (cf. Table 4), to demonstrate the efficiency of our approach
in the handling of large number of processes, we fix the maximal clock constant as
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Table 3: Experimental results in the LTL verification with increasing maximal clock
constants

PAT-Sim PAT-NonSim
MCC #Succ Time Memory #Succ Time Memory

CSMACD 404 4,334 5 36 14,169 493 876
CSMACD 808 8,608 18 75 28,257 2,857 1,489
CSMACD 1,616 16,688 35 82 - - oom
Fischer 200 979 2 28 2,812 417 1,101
Fischer 400 1,779 3 29 5,412 3,847 1,600
Fischer 800 3,379 8 34 - oot -
Lynch 200 6,937 25 53 19,682 2,404 1,434
Lynch 400 13,137 45 62 - oot -
Lynch 800 25,537 90 63 - - -

Table 4: Experimental results in the LTL verification with increasing number of pro-
cesses

PAT-Sim PAT-NonSim CTAV
#Proc #Succ Time Memory #Succ Time Memory Time

CSMACD 12 22,184 283 1,041 - oot - 562
CSMACD 16 28,972 511 756 - - - oom
CSMACD 20 35,760 839 1,063 - - - -
Fischer 8 608 5 39 1,974 10,275 1,689 4
Fischer 12 672 46 208 - - oom oom
Fischer 16 736 310 965 - - - -
Lynch 4 3,591 1 25 10,003 243 329 1
Lynch 8 9,839 42 65 - - oom 5
Lynch 12 19,551 585 326 - - - oom

808 for CSMACD and 100 for other benchmarks. We increase the number of processes
then. In this experiment, we compare our approach with CTAV tool. The results indicate
PAT-Sim approach outperforms PAT-NonSim and CTAV on all the models. Specifically,
it is faster and can handle more processes than PAT-NonSim and CTAV. For example,
in the CSMACD model with 16 processes, PAT-Sim can verify within 511 seconds and
756 MB while PAT-NonSim runs out of time, and CTAV runs out of memory.

With the results of four experiments, we answer research questions RQ1 and RQ2.
Our approach improves the performance significantly by reducing the number of itera-
tions. Furthermore, it can handle models with clock constants larger than a thousand.

6 Discussion
Limitation. A limitation of our approach is that when maximal lower and upper bounds
are the same, LU abstraction would not provide better performance. This is because our
method will take the same number of iterations to achieve the fixpoint, and there are
overhead for calling the Down operator.
Complexity of Down operator [7]. For checking of reachability properties, given
the maximal distance from the initial state to a state in the explored model as N , the
complexity is O(N). For checking of LTL properties, the time complexity is linearly
dependent upon the size of the symbolic (BDD) representation in terms of the distances
between states in the automaton graph, the number and arrangement of the strongly
connected components in the graph, and the number of fairness conditions asserted [37].
Overall, Down operator can be computed efficiently. In addition, variable ordering could
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affect the performance of BDD. Overall, the Down operator can be computed efficiently.
In our implementation, we make use of several well-known heuristics [22, 6, 9, 36] that
can produce a fairly good ordering.

7 Conclusion
In this paper, we propose to use the simulation relation to improve the BDD-based
model checking for real-time systems. Our approach is applied to verify reachability
and LTL properties. Experimental results confirm that our approach achieves a signif-
icant speedup and outperforms Rabbit, Uppaal, and CTAV. As future works, first, we
plan to investigate the extensibility our method to other variety of timed automata, such
as parametric timed automata [4]. Second, we plan to investigate to apply other reduc-
tion techniques, e.g., interpolation [32] or IC3 [17], on top of our proposed techniques.
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Appendix: Proof

3 Reachability Analysis Algorithm
Lemma 1. Given q ′1 4 q1, if there exists a path of length n , q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′n in
L′, there exists a path of length n , q1 → q2 → · · · qn in L such that q ′i 4 qi for all
1 ≤ i ≤ n .

Proof: We prove by induction that the lemma is true for all cases of n .

– n = 1: This is vacuously true because q ′1 4 q1
– Suppose for any path of length n = k , q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′k in L′, there exists

a path of length k , q1 → q2 → · · · qk in L such that q ′i 4 qi for all 1 ≤ i ≤ k .
We prove that this is still true for n = k + 1. Given any path of length k + 1,
q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′k ⇒ q ′k+1, in L′, by the induction assumption, there exists
q1 → q2 → · · · qk in L such that q ′i 4 qi for all 1 ≤ i ≤ k . By definition of L′,
q ′k ⇒ q ′k+1 implies q ′k → r ′ where q ′k+1 4 r ′. Moreover, since in L, q ′k 4 qk ,
there exists a transition qk → r in L such that r ′ 4 r . Thus, q ′k+1 4 r . Therefore,
we can select qk+1 = r , and the lemma is proved. 2

Theorem 1. Given the transition systems L, L′, and a set of states goal , goal is reach-
able in L if and only if goal is reachable in L′.

Proof: If goal is reachable in L, there exists a finite path q1 → q2 → · · · qn in L such
that q1 ∈ initc and qn ∈ goal . As the definition of L′, this path also exists in L′ and
q1 ∈ init ′c . Thus, goal is reachable in L′.

If goal is reachable in L′, there exists a finite path q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′n in L′
such that q ′1 ∈ init ′c and q ′n ∈ goal . According to Lemma 1, there exists a finite path
q1 → q2 → · · · qn in L such that q1 ∈ initc and q ′i 4 qi for all 1 ≤ i ≤ n . Thus,
qn ∈ goal . Therefore, goal is also reachable in L. 2

Theorem 2. Algorithm 2 is sound and complete.

Proof: As we discussed the difference between Algorithm 2 and Algorithm 1, given
a transition system L, while the function IsReach(Init ,Tick ,Trans, goal) checks the
reachability of goal on L, the function IsReachsim(Init ,Tick ,Trans, goal) actually
checks the reachability of goal on L′. Thus, the correctness of Algorithm 2 is obtained
based on Theorem 1 and the correctness of Algorithm 1. 2

Corollary 1. The followings are hold

1. If Q1 ⊆ Q2, Down(Q1) ⊆ Down(Q2).
2. Down(Q1 ∩Q2) ⊆ Down(Q1) ∩Down(Q2).
3. Down(Q1 ∪Q2) = Down(Q1) ∪Down(S2)
4. Down(succ(Q)) = Down(succ(Down(Q)))

Proof:
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1. Given any state s ′ ∈ Down(Q1), there exists s ∈ Q1 such that s ′ 4 s . Since
Q1 ⊆ Q2, it follows that s ∈ Q2. Thus, s ′ ∈ Down(Q2).

2. According to Corollary 1.1, Down(Q1∩Q2) ⊆ Down(Q1) and Down(Q1∩Q2) ⊆
Down(Q2). Thus, Down(Q1 ∩Q2) ⊆ Down(Q1) ∩Down(Q2).

3. According to Corollary 1.1, Down(Q1) ⊆ Down(Q1 ∪ Q2) and Down(Q2) ⊆
Down(Q1 ∪ Q2). Thus, Down(Q1) ∪ Down(S2) ⊆ Down(Q1 ∪ Q2). Then,
we prove that Down(Q1 ∪ Q2) ⊆ Down(Q1) ∪ Down(S2). Given any s ′ ∈
Down(Q1 ∪ Q2), there exists s ∈ Q1 ∪ Q2 such that s ′ 4 s . If s ∈ Q1, then
s ′ ∈ Down(Q1). Otherwise, if s ∈ Q2, then s ′ ∈ Down(Q2). Therefore, s ′ ∈
Down(Q1) ∪Down(Q2).

4. Since Q ⊆ Down(Q), succ(Q) ⊆ succ(Down(Q)). It follows that Down(succ(Q))
⊆ Down(succ(Down(Q))). We prove Down(succ(Down(Q))) ⊆ Down(succ(Q)).
Given any s ∈ Down(succ(Down(Q))), there exists s1 ∈ Q , s2, and s3 such that
s2 4 s1, s2 → s3, and s 4 s3. However, since s2 4 s1, there exists s ′3 such that
s1 → s ′3 and s3 4 s ′3. Thus, s 4 s ′3. We have s1 ∈ Q , s1 → s ′3, and s 4 s ′3,
therefore, s ∈ Down(succ(Q)).

2

Lemma 2. Assume Q ′ = Down(Q), after n iterations, if Reach(Q ,R) reaches the
fixpoint, Reachsim(Q ′,R) also reaches the fixpoint. Moreover the results of those func-
tions satisfy Reachsim(Q ′,R) = Down(Reach(Q ,R)).

Proof: Let Qi (respectively Q ′i ) be the value of Q in the function Reach (respectively
Reachsim ) after the i th iteration in the while-loop . We prove by induction that Q ′i =
Down(Qi) for all i ≥ 0.

– i = 0: Q ′0 = Q ′ = Down(Q) = Down(Q0)

– Suppose Q ′k = Down(Qk ), we prove that Q ′k+1 = Down(Qk+1). We have Q ′k+1 =
Q ′k∪Down(succ(Q ′k )) = Down(Qk )∪Down(succ(Down(Qk ))) = Down(Qk )∪
Down(succ(Qk )) = Down(Qk ∪ succ(Qk )) = Down(Qk+1).

Since Q ′i = Down(Qi), when the function Reach convergences, Qi = Qi+1, Reachsim
also convergences, Q ′i = Q ′i+1. Moreover, the results of those functions satisfy
Reachsim(Q ′,R) = Down(Reach(Q ,R)). 2

Lemma 3. Assume Q ′ = Down(Q), Q ′∪Reachsim(Down(succ(Q ′,Tick)),Trans) =
Down(Q ∪ Reach(succ(Q ,Tick),Trans))

Proof: By Corollary 1.4, it follows that Down(succ(Q ′,Tick))
= Down(succ(Down(Q),Tick)) = Down(succ(Q ,Tick)).
Thus, by Lemma 2, we obtain
Reachsim(Down(succ(Q ′,Tick))) = Down(Reach(succ(Q ,Tick))). Therefore, Q ′∪
Reachsim(Down(succ(Q ′,Tick)),Trans) = Down(Q∪Reach(succ(Q ,Tick),Trans))
by Corollary 1.3. 2
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Theorem 3. Algorithm 2 requires less or the same number of iterations than Algo-
rithm 1.

Proof: According to Lemmas 2 and 3, in Algorithms 1 and 2, Q ′ = Down(Q) holds.
Thus, if Algorithm 1 terminates when Q ∩ goal 6= ∅, Algorithm 2 also terminates be-
cause Q ′ ∩ goal 6= ∅. Otherwise if Q = Qp holds in Algorithm 1, Q ′ = Q ′p also holds
in Algorithm 2. 2

4 Emptiness Checking Algorithm
Lemma 4. Given q ′1 4 q1, if there exists a path of length n , q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′n in
L′, there exists a path of length n , q1 → q2 → · · · qn in L such that q ′i 4 qi for all
1 ≤ i ≤ n .

Proof: We prove by induction that the lemma is true for all cases of n .

– n = 1: This is vacuously true because q ′1 4 q1
– Suppose for any path of length n = k , q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′k in L′, there exists

a path of length k , q1 → q2 → · · · qk in L such that q ′i 4 qi for all 1 ≤ i ≤ k .
We prove that this is still true for n = k + 1. Given any path of length k + 1,
q ′1 ⇒ q ′2 ⇒ · · · ⇒ q ′k ⇒ q ′k+1, in L′, by the induction assumption, there exists
q1 → q2 → · · · qk in L such that q ′i 4 qi for all 1 ≤ i ≤ k . By definition of L′,
q ′k ⇒ q ′k+1 implies that there exists r ′ such that q ′k → r ′ and q ′k+1 4 r ′. Moreover,
since in L, q ′k 4 qk , there exists a transition qk → r in L such that r ′ 4 r . Thus,
q ′k+1 4 r . Therefore, we can select qk+1 = r , and the lemma is proved. 2

Lemma 5. Given q ′1 4 q1, if there exists a cycle q ′1 ⇒ · · · ⇒ q ′1 in L′ which contains
a Ji -state for all Ji ∈ J , there exists a cycle q1 → · · · → q1 in L which contains a
Ji -state for all Ji ∈ J .

Proof: We prove by induction that for all n ≥ 2, in L, there exists q1, · · · , qn such that
for all 1 ≤ i < n , qi → · · · → qi+1 and q ′1 4 qi for all 1 ≤ i ≤ n .

– n = 2: Since q ′1 4 q1, and there exists q ′1 ⇒ · · · ⇒ q ′1 in L′, by applying Lemma 4,
there exists q1 → · · · → q2 in L where q ′1 4 q2.

– Assume if n = k , there exists q1, · · · , qk such that for all 1 ≤ i < k , qi → · · · →
qi+1 and q ′1 4 qi for all 1 ≤ i ≤ k . Since q ′1 4 qk and q ′1 ⇒ · · · ⇒ q ′1 in L′, by
applying Lemma 4, there exists a path qk → · · · → r such that q ′1 4 r . Thus, we
can select qk+1 = r , and there exists q1, · · · , qk+1 such that for all 1 ≤ i < k + 1,
qi → · · · → qi+1 and q ′1 4 qi for all 1 ≤ i ≤ k + 1.

By induction, there are infinite states q1, q2, · · · such that qi → · · · → qi+1 in
L. Since the number of states in L is finite, there exists qj = q1 where j > 1.
Therefore, there exists a cycle q1 → · · · → q1 in L. Moreover, since the simula-
tion relation is compatible with the set of Büchi conditions J , the fact that the cycle
q ′1 ⇒ · · · ⇒ q ′1 in L′ contains a Ji -state for all Ji ∈ J implies that for all 1 ≤ i < j ,
the path qi → · · · → qi+1 also contains a Ji -state for all Ji ∈ J . Thus, the cycle
q1 → · · · → q1 also contains a Ji -state for all Ji ∈ J . Therefore, there exists an ac-
cepting cycle q1 → · · · → q1 in L. 2
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Lemma 6. If there exists an accepting run in L′, there exists an accepting run in L.

Proof: Since the number of states in L′ is finite, the accepting run in L′ has a lasso form
q ′0 ⇒ · · · ⇒ q ′m ⇒ (r ′0 ⇒ · · · ⇒ r ′n)

w where q ′0 ∈ init ′c . By applying Lemma 4 for
the path q ′0 ⇒ · · · ⇒ q ′m ⇒ r ′0, there exists a path q0 → · · · → qm → r0 in L where
q0 ∈ initc . Then, by applying Lemma 5 for the cycle r ′0 ⇒ · · · ⇒ r ′n ⇒ r ′0, there exists
a cycle r0 → · · · → rk → r0 in L. Moreover, this cycle also contains a Ji -state for all
Ji ∈ J . Thus, there exists an accepting run q0 → · · · → qm → (r0 → · · · → rk )

w in
L. 2

Theorem 4. Given a transition system L, a set of Büchi conditions J , and a simulation
relation 4 over states of L, L has an accepting run if and only if L′ has an accepting
run.

Proof: Clearly if there exists an accepting run in L, this run also exists in L′. In the
other direction, if there exists an accepting run in L′, by Lemma 6, there exists an ac-
cepting run in L. Thus, the theorem is proved. 2

Theorem 5. Algorithm 4 is sound and complete.

Proof: As we discussed the difference between Algorithm 4 and Algorithm 3, given
a transition system L with a set of initial states Init , the transition relation Tr and a
set of Büchi conditions J , while IsEmpty(Init ,Tr , J ) is checking the emptiness of
L, IsEmptysim(Init ,Tr , J ) is actually checking the emptiness of the transition system
L′. Thus, the correctness of Algorithm 4 is obtained based on Theorem 4. 2

Lemma 7. If new ′ = Down(new), then Reachsim(new ′∩Ji) = Down(Reach(new∩
Ji)) for any Büchi condition Ji ∈ J .

Proof: Note that Ji = Down(Ji), we prove that new ′∩Ji = Down(new∩Ji) and then
apply Lemma 2. We have Down(new ∩ Ji) ⊆ Down(new)∩Down(Ji) = new ′ ∩ Ji .
Then, we prove new ′ ∩ Ji ⊆ Down(new ∩ Ji). Given any s ′ ∈ new ′ ∩ Ji , there exists
s ∈ new such that s ′ 4 s . Moreover, s ′ ∈ Ji implies s ∈ Ji . So s ∈ new ∩ Ji .
Therefore, s ′ ∈ Down(new ∩ Ji). 2

Lemma 8. If new ′ = Down(new), Down(new∩succ(new)) ⊆ new ′∩Down(succ(new ′))

Proof: We have Down(new ∩ succ(new)) ⊆ Down(new) ∩ Down(succ(new)) =
new ′ ∩Down(succ(new)) = new ′ ∩Down(succ(new ′)). 2


