
sVerify: Verifying Smart Contracts Through
Lazy Annotation and Learning

Bo Gao1(B), Ling Shi2, Jiaying Li2, Jialiang Chang3, Jun Sun2, and Zijiang Yang3

1 Singapore University of Technology and Design, Singapore, Singapore
2 Singapore Management University, Singapore, Singapore

3 Western Michigan University, Kalamazoo, USA

Abstract. Smart contracts have recently attracted much attention from industry
as they aim to assure anonymous distributed secure transactions. It also becomes
clear that they are not immune to code vulnerabilities. As smart contracts can-
not be patched once deployed, it is crucial to verify their correctness before
deployment. Existing approaches mainly focus on testing and bounded verifi-
cation which do not guarantee the correctness of smart contracts. In this work,
we develop a formal verifier called sVerify for Solidity smart contracts based on a
combination of lazy annotation and automatic loop invariant learning techniques.
The latter is essential as explicit or implicit loops (due to fallback function calls)
are common in smart contracts. Patterns and features which are specific to smart
contracts are used to facilitate invariant learning. sVerify has been evaluated with
4670 Solidity smart contracts, and the evaluation result shows that sVerify is effec-
tive and reasonably efficient for verifying smart contracts.

Keywords: Verification · Smart contracts · Loop invariant learning

1 Introduction

Blockchain is a fast-growing research area in recent years. It is first conceptualized in
Bitcoin blockchain [23] by Satoshi Nakamoto based on multiple techniques like crypto-
graphic chain of blocks by Stuart Haber andW. Scott Stornetta [12], distributed systems
by Lamport [16], etc. The emergence of Bitcoin makes financial transactions among
strangers possible without the help of a third-party authority. Later on, Buterin stepped
forward to develop the platform Ethereum [29], which allows self-enforcing programs,
called smart contracts, to run by themselves. Smart contracts have since attracted much
attention in many domains, such as financial institutes and supply chains.

A smart contract is a computerized transaction protocol that executes the terms of a
contract to satisfy user requirements, such as voting and trading. It can be regarded as
a computer program, which is typically written in a Turing-complete language called
Solidity in Ethereum. The immutability of blockchain makes smart contracts unpatch-
able once they are deployed on the blockchain. Furthermore, the Javascript-like syntax
of Solidity and its many unique language features (e.g., storage variables and fallback
functions) often confuse users, even if they are experienced with traditional program-
ming languages. As a result, there are many attacks due to code vulnerabilities that
caused huge economic losses. For instance, the DAO attack [1] resulted in a loss roughly
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2021, LNCS 13036, pp. 453–469, 2021.
https://doi.org/10.1007/978-3-030-89159-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89159-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-89159-6_28

454 B. Gao et al.

equivalent to 60million USD at the time. The attacker found a loophole in the splitDAO
function so that he could repeatedly withdraw Ether through an implicit loop in the fall-
back function in a single transaction.

To react on the increasing amount of attacks on smart contracts, multiple approaches
and tools have been developed to analyze the correctness in recent years. For instance,
Luu et al. [20] developed a symbolic engine for Solidity smart contracts called Oyente,
which systematically analyzes individual functions in a smart contract to identify vul-
nerabilities. Nikolic et al. [24] developed a symbolic analyzer called MAIAN, which
performs inter-procedural symbolic analysis to check suicidal, prodigal, and greedy
contracts based on the bytecode of Ethereum smart contracts. These works, however,
focus on testing smart contracts rather than verifying them. For instance, these sym-
bolic execution engines set a bound on the loop iterations or the number of function
calls and aim to cover those bounded program paths with generated test cases. There
are also several attempts on verifying smart contracts, such as Securify [27], Zeus [15],
solc-verify [13] and VerX [25]. The first three approaches translate Solidity programs
into existing intermediate languages (i.e., Datalog, LLVM and Boogie) and reuse exist-
ing verification facilities. Such approaches are based on abstract interpretation, which
is known to have problems like fixed abstract domains and false alarms due to coarse
over-approximation. In particular, Securify does not support numerical properties like
overflow; Zeus suffers from high numbers of false alarms and solc-verify lacks full
coverage. VerX applies delayed predicate abstraction (which is based upon symbolic
execution and abstraction) to verify real-world smart contracts. However, VerX only
supports external-callback-free contracts [25] and a bound on the loop iteration within
a function is required.

In this work, we develop a formal verification engine called sVerify which is
designed for Solidity programs. sVerify is built upon lazy annotation [21] and state-
of-the-art loop invariant generation techniques [17,31]. Given a smart contract with
assertions, sVerify automatically constructs a labeled control-flow graph (CFG) of each
function. Each node in the CFG is annotated lazily with an invariant (which is initially
true) in a property-guided (i.e. assertion-guided) way. The invariants are monotoni-
cally strengthened through sound inference rules. More importantly, invariants associ-
ated with nodes contained in explicit or implicit loops are learned automatically with a
combination of concrete testing, machine learning and symbolic execution techniques,
based on features specific to smart contracts. The invariants are strengthened until the
assertions are verified or falsified.

sVerify has been applied to verify against the common code vulnerabilities includ-
ing overflow and re-entrancy which are two important types of vulnerabilities, on two
sets of 835 and 3897 smart contracts respectively. It successfully verifies or falsifies
804 contracts on the first test set in the comparison experiment with Zeus. The result
shows that sVerify suffers fewer false alarms than Zeus. In the second test subject set,
3859 contracts are successfully evaluated by sVerify against solc-verify and VeriSol. The
manual examined results on 68 contracts with more than 100 transactions regarding to
overflow show that sVerify gets fewer false alarms than solc-verify and more finished
contracts than VeriSol. To further evaluate sVerify on verifying complex smart contracts
against contract-specific assertions, we systematically apply sVerify to 7 different kinds

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 455

Fig. 1. Example Contracts and corresponding labeled CFGs. (Color figure online)

of contracts that have the most balances with manually specified assertions. Three con-
tracts have been verified successfully, and the falsified assertions reveal 2 vulnerabilities
in these contracts.

To summarize, this paper makes the following contributions:

– We propose a method to verify the correctness of smart contracts through lazy anno-
tation and invariant learning.

– We develop an end-to-end verification engine sVerify for Solidity contracts.
– We evaluate the effectiveness of sVerifywith real-world smart contracts against over-

flow and re-entrancy vulnerabilities, and find sVerify can verify these contracts with
fewer false alarms.

2 Overview Through Motivating Examples

In this section, we give an overview on how sVerify works by two example contracts
(one is buggy and the other is correct, as shown in Fig. 1).

Figure 1a is a simplified version of the DAO contract. The function withdraw
allows the investor msg.sender to claim back his investment and sets the investor’s
balance to 0. However, the msg.sender here is a contract account, which may be
controlled by an attacker. The fallback function in this malicious contract is crafted
to call back the withdraw function again. Note that the fallback function is invoked
automatically when some Ether is transferred into the contract (triggered by line 6)
according to the mechanism of Ethereum Virtual Machine (EVM). This action allows

456 B. Gao et al.

the attacker to claim more Ether than he deserves. The assertion at line 9 which requires
the balance of the contract being decreased by amt exactly after line 8 will be violated
in such cases. This vulnerability is also referred to as re-entrancy [20]. To prevent such
vulnerabilities, one of the improvement shown in Fig. 1d introduces a variable lock to
ensure the transfer at line 9 can be executed only once. In addition, it should be noted
that the variable lock can only be modified by the function withdraw. The statement
at line 7 requires lock to be false, and only if this condition is satisfied, lock is
updated to be true and amt is sent to the investor msg.sender. If there is a callback
action again, it will be reverted by the condition at line 7, such transactions always fail.
As a result, the assertion at line 10 always holds.

To verify the toyDAO A contract, sVerify first constructs the CFG of the
withdraw function as shown in Fig. 1b. In this CFG, nodes root and stop represent the
entry and exit of the function respectively. The label on the arrow is the corresponding
command in the form of line number. There are two implicit edges drawn with dashed
lines in Fig. 1b. These two edges link node n4 to node root and node stop to node
n4, which capture an inter-contract function call to the function withdraw. Node n5

before the assertion statement at line 9 is an assertion node, which is labeled with the
corresponding assertion this.balance = oldq − amt (highlighted in red).

Based on the constructed CFG, sVerify infers the invariant for each node and checks
whether the invariant at node n5 implies the assertion afterwards. Figure 1c shows the
invariants of node n1–n3 with root node being true. Taking node n2 as an example, its
invariant is strengthened based on the invariant associated with node n1 and statement
at l5. That is, the new invariant is the conjunction of the original invariant (which is
true) at n2 and oldq = this.balance ∧ amt = balances[msg.sender] (which is the
constraint that must be satisfied at n2 since n2 can only be reached from n1). To infer
the invariant at node n4 which is the head node of the loop starting with an implicit
edge labeled with call withdraw and ended with an edge labeled with return, sVer-
ify invokes the loop invariant generator to learn an invariant. It first generates random
valuations of all relevant variables (including amt, oldq, and this.balance), then
categorizes the valuations. After that it calls the learner to generate a candidate invariant
which is validated by the validator thereafter. If the candidate invariant is not valid, a
counterexample in the form of variable valuations is generated and used to learn a new
candidate invariant. In this example, during the invariant learning process, an error sam-
ple (amt=1, oldq=257, this.balance=256) is generated. With this sample,
the msg.sender will receive 1 wei (the smallest denomination of Ether) at line 6,
and possibly will call back to this function again to get another 1 wei. While the sec-
ond call satisfies the assertion at line 9 (amt=1, oldq=256, balance=255), the
first call which completes subsequently violates the assertion (amt=1, oldq=257,
balance=255). Thus, the verification terminates and the contract is falsified.

For the fixed contracttoyDAO B in Fig. 1d, the corresponding labeled CFG is shown
in Fig. 1e where node n5 is the head node of the loop. Similarly, sVerify infers the
invariant for each node and invokes the loop invariant generator to generate the invari-
ant for node n5. The loop invariant generator generates a valid candidate invariant
locked = true ∧ this.balance = oldq − amt at node n5 after a few iterations.

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 457

Afterwards, the contract is verified since the invariant at n5 implies the assertion
this.balance = oldq − amt at that node successfully.

3 Our Approach

In this section, we present our approach step-by-step in detail.

3.1 Formalization of Smart Contracts

Unlike traditional programs in which the main() function is the single entry, smart
contracts can be accessed from any public function once they are deployed. Thus, it is
important that each function is verified separately. Without loss of generality, we define
the following commands which capture a core set of sequences of EVM instructions.
Readers can refer to Ethereum yellow paper [29] and KSolidity [19] etc. for further
details.

Definition 1 (Command). A command in smart contracts is defined as follows.

Com ::= sstore(p, v) | sload(p) | x := expr | if b | assert b | call f | return
expr ::= x | v | op(expr, expr)
op ::= add | mul | sub | div | mod
b ::= true | false | iszero(expr) | cmp(expr, expr) | not b | b and b | b or b
cmp ::= lt | gt | eq

sstore(p, v) writes a position p with value v (i.e., a 256-bit bitvector) to storage,
while sload(p) reads a value of p from storage. x := expr assigns the valuation of
expression expr to variable x. The expression expr can be a variable, a value, or an
arithmetic operation on two expressions such as addition add, multiplication mul, and
so on. Branching command if b evaluates a boolean expression b which can be boolean
constants true or false. The expression also includes comparison operators like iszero
and cmp (lt, gt, eq) together with boolean operators (not, and, or). Assertion assert b
asserts the boolean expression b shall be true. Commands call f and return represent
a call to function f and a return to the caller respectively.

Definition 2 (Function). A smart contract function F is a tuple (N, root, E, I,A),
where N is a set of nodes (representing control locations); root ∈ N is the entry node;
E ⊆ N × Com × N is a set of edges labeled with a command defined in Definition 1;
I : N− > Pred is a function that labels each node N with an invariant predicate; and
A : N− > Pred is a function which labels each node N with an assertion predicate.

The above defines a function of a smart contract to be a labeled control-flow graph
(CFG) to simplify the discussion. In practice, given a function of a smart contract C,
we first compile the source code into EVM bytecode [29] and subsequently disassemble
the bytecode into EVM instructions. The CFG is then constructed through simulating
the stack with the instructions, i.e., to figure out the targets of all jump instructions.
To capture control flow due to the inter-contract function calls, two implicit edges are
generated by linking the call node to the root node and linking the stop node to the call

458 B. Gao et al.

Fig. 2. Execution rules, where (n
c→e n′) ∈ E

node. Through these, a complete CFG is constructed. Readers are referred to [3,6] for
further details.

Initially, the invariant function I is defined such that I(n) = true for every n ∈ N .
Furthermore, the assertion function A is defined such that A(n) = b if n is a program
location with a command assert b; otherwise A(n) = true. For instance, as shown in
the CFG of function withdraw in Fig. 1e, the invariant I(n5) of node n5 is true, and
the assertion A(n5) is this.balance = oldq − amt.

Definition 3 (Symbolic Semantics). Let (N, root, E, I,A) be a function of a smart
contract, its (symbolic) semantics is defined as a labeled transition system (S, init,→s,
I,A), where S is a set of symbolic states, and each state s is a triple (n, Γ, V) where
n ∈ N , Γ is a call stack,1 and V is a symbolic valuation function which maps program
variables to expressions of symbolic variables, init ∈ S is the initial state, →s⊆ S ×
Com × S is the transition relation of the semantics while E is the transition relation at
the code level. →s conforms to the semantic rules defined in Fig. 2.2

In Fig. 2, rule Sstore captures how the value of the position in storage is updated.
After the execution of the command, n is moved to the next node n′ and position p in
storage V ′ is updated by the value of v. Rule Assign updates the value of variable x in
V ′ based on the evaluation of expression expr in the valuation V (denoted by function
eval). The rules of If-T and If-F capture the branch situation, n is moved to either
node n′ or n′′ after executing this command. Rule Call captures the execution of any
possible inter-contract function call. After the execution, n is moved to the root node of
the called function n′, function f and the valuation of the local variables VΓ are added
to the function call stack Γ�〈(f, VΓ)〉, and valuation V ′ is to extract the valuation
of global variables in V that are only modified in current function by extract. Rule
Return pops the top element of the stack and moves to the node of the caller with
the updated valuation which restores the local variable valuation at the calling node.
Symbol ⊕ overrides the variable valuation in V with those in VΓ .

1 We omit the details on the content of the stack for brevity.
2 Due to the page limit, only a core set of rules are presented here.

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 459

A path p of a function in a smart contract is a sequence of alternating
nodes/commands in the form of 〈n0, c0, n1, c1, . . . , cn, nn+1〉, where n0 = root

and ni
ci→e ni+1 for all 0 ≤ i ≤ n. A (symbolic) trace is a path in the sym-

bolic semantics, and each trace corresponds to a path in the contract by definition.
Thus, a trace tr is a sequence of alternating states/commands in the form of tr =
〈s0, c0, s1, c1, . . . , cn, sn+1〉, where s0 = init and si

ci→s si+1 for all 0 ≤ i ≤ n. We
write last(tr) to denote the last state of the trace sn+1. The set of symbolic traces of a
function F , written as Trace(F), is the set of traces of its symbolic semantics, where
each trace is a sequence whose head is the initial state and the alternating state/command
conforms to the transition relation.

Definition 4 (Node Invariant). Given a smart contract function F = (N, root, E,
I,A), a predicate φ is an invariant at node n (denoted as I(n) = φ) if and only
if last(tr) |= φ for all tr ∈ Trace(F) s.t. π(last(tr)) = n.

where s |= φ means φ is satisfied by the variable valuation s. Intuitively, the above def-
inition states φ is an invariant at node n if and only if φ is satisfied by all traces leading
to node n, i.e., when the trace reaches n, its variable valuation satisfies φ. Function last
returns the last element of the trace, and function π returns the node of the tuple.

Definition 5 (Contract Correctness). Given a contract C with each function Fi =
(Ni, rooti, Ei, Ii,Ai), Fi is correct if ∀nj ∈ Ni, Ii(nj) ⇒ Ai(nj). Contract C is
correct if all the functions Fi in C are correct.

Based on the constructed CFG and its semantics, the verification of a smart contract
can be achieved by checking whether the invariant of any node can imply the associated
assertion. If yes, the program is verified to be correct. sVerify infers the node invariants
with the method of strongest postcondition. Before presenting how the inference works,
we first define how the strongest postcondition is computed.

Definition 6 (Strongest Postcondition). Given a command c ∈ Com and a precondi-
tion φ, the strongest postcondition sp(c, φ) is defined as:

sp(sstore(p, v), φ) = ∃y, φ[y/storage[p]] ∧ storage[p] = v
sp(x := expr, φ) = ∃y, x = expr[y/x] ∧ φ[y/x]
sp(c, φ) = φ ∧ b if c = if b or assert b
sp(c, φ) = φ if c = sload(x)
sp(call f, φ) = ∀x ∈ LV, ∀y ∈ GV ′, φ φ(x) φ(y)

In the above definition, the fresh variable y represents the previous values of storage[p]
and x in the strongest postconditions for command sstore and assignment. For the
branching and assertion commands, the strongest postcondition is the conjunction of φ
and b. As command sload only reads the storage, its strongest postcondition keeps the
same. We remark that the strongest postcondition for command call f is φ except that
all constraints related to local variables LV and global variables GV ′ are eliminated.
Symbol represents variable elimination of all variables in φ. GV ′ is global variables

460 B. Gao et al.

Algorithm 1: Node Invariant Inference Algorithm inferI(F, n)
1 Ψ ← false;
2 for (mi, ci, n) ∈ E do
3 Ψ ← Ψ ∨ sp(ci, I(mi)) ;
4 end
5 if Ψ �= false then I(n) ← I(n) ∧ Ψ ;

which can be modified by other functions besides the current function. This rule can
be potentially improved with a contract-level invariant inference method. In sVerify,
we conduct basic static analysis which allows us to identify the global variables that
are modified by each function in the contract. With that information, we strengthen the
above rule as follows: all constraints on global variables except those which are only
modified by the current function, are eliminated. This is sound as all callback actions to
the current function are captured in the CFG.

Algorithm 1 shows details on updating the invariant of a node n based on the
strongest postcondition. Let Ψ be a predicate which is initially false. We compute
sp(ci, I(mi)) for each transition (mi, ci, n) to node n by command ci. Their disjunc-
tion is a constraint which must be satisfied by the invariant at node n. Intuitively, this
is because n can only be reached via one of its parents. Lastly, at line 5, we set the
invariant at node n to be the conjunction of I(n) and Ψ so that it is monotonically
strengthened over time. The condition at line 5 ensures that a node without a parent like
the root node is not updated.

Proposition 1. The invariant inferred by Algorithm 1 is indeed an invariant. ��

3.2 Loop Invariant Generation

While Algorithm 1 can be applied to infer invariants systematically, it may not be effec-
tive for loops. That is, given a loop of the form 〈n0, c0, n1, c1, n2 . . . , nk, ck, n0〉, the
invariant of node n0 is recursively inferred based on itself and thus may never termi-
nate. Therefore, we distinguish head nodes of certain loops (i.e., a node representing the
start of a loop statement or an external function call, it can be identified from the CFG)
and apply a different approach to infer invariants for such nodes. The overall idea is
an iterative “guess and check” approach for synthesizing loop invariants. This iterative
approach consists of three phases, data labeling, learning (or guessing), and validation.
The details are shown in Algorithm 2 where F is the CFG of the function and n is the
head node of a loop.

In Algorithm 2, Var is the set of loop-related variables. The valuation set of vari-
ables in Var at node n (denoted as DS) is initiated by random sampling at line 1 and
the size of the initial DS is decided empirically, e.g., 20. Note that an effective sam-
pling method would allow us to learn the invariant efficiently, as shown in [17]. On the
other hand, since the learned invariant is always validated by the validator, the learning
is guaranteed to converge if there exists an invariant of the supported form. In general, a
reasonably large set of random samples is often helpful in learning candidate invariants.

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 461

Algorithm 2: genLI(F, n)
1 DS = init(Var); DS′ ← ∅; LDS ← ∅;
2 for ds ∈ DS do
3 DS′ ← DS′ ∪ concExLP (ds, n);
4 end
5 LDS ← label(DS′, F, N) ;
6 while not timeout do
7 (flag, ds) ← checkErr(LDS);
8 if !flag then
9 return (“falsified”, ds);

10 end
11 φ ← learnINV (LDS);
12 CE ← validate(φ, F, n);
13 if CE = ∅ then
14 return (“succeed”, φ);
15 else
16 for ds ∈ CE do
17 DS′ ← DS′ ∪

concExLP (ds, n);
18 end
19 LDS ← label(DS′, F, N) ;
20 end
21 end
22 (CE, φ′) ← heurAndV al(φ, F, n);
23 if CE = ∅ then return (“succeed”, φ′) ;
24 else return (“timeout”, null) ;

Algorithm 3: Overall Algorithm
1 {F1, F2, . . . , Fm} ← CFG build(C);
2 for F ∈ {F1, F2, . . . , Fm} do
3 I′ ← ∅; I ← {true | n ∈ N};
4 while I′ �= I do
5 I′ ← I;
6 for n ∈ N do
7 if n is loop head then
8 (msg, v) ← genLI(F, n);
9 if msg = “succeed” then
10 I(n) ← v;
11 else if msg = “falsified” then
12 return (”falsified”, v);
13 else
14 return (”timeout”, null);
15 else
16 I(n) ← inferI(F, n) ;
17 end
18 end
19 end
20 for n ∈ N do
21 if I(n) �⇒ A(n) then
22 return (“falsified”, ce)
23 end
24 end
25 end
26 return “verified” ;

LDS is labeled DS′, which is updated at line 5 by label function. The data samples are
collected through lines 2–4 by concretely executing the loop part with the valuations
from DS. During the execution, node n may be visited iteratively and all the variable
valuations upon reaching n are added to DS′ as well. Labeling for valuations in DS′

is based on three categories, i.e., ‘+’ for positive, ‘−’ for negative, and ‘e’ for error.
A valuation s which starts from an initial valuation s0 and becomes s after zero or
more iterations is labeled based on whether s0 satisfies I(n) and whether eventually an
assertion is violated. Specifically,

– ‘+’: if s0 satisfies I(n), and no assertion is violated during the execution.
– ‘−’: if s0 violates I(n) and an assertion is violated during the execution.
– ‘e’: if s0 satisfies I(n), and an assertion is violated during the execution.

Intuitively, the valuations labeled with ‘+’ must satisfy the (unknown) loop invari-
ant; the one labeled with ‘−’ must not satisfy the loop invariant; and a valuation labeled
with ‘e’ is a concrete counterexample which falsifies the assertion. Take the contract
in Fig. 1d as an example, assume 2 valuations (2, 0, 20, 18), (5, 1, 30, 25) for variables
(amt, lock, oldq and this.balance) are randomly sampled at line 1. After exe-
cuting function concExLP with these valuations at line 3, 1 more valuation is added to
DS′: (2, 0, 20, 16), which violates the assertion. Afterwards, valuation {(5, 1, 30, 25)}
is labeled with ‘+’; and {(2, 0, 20, 18), (2, 0, 20, 16)} are labeled with ‘−’.

After labeling the initial dataset, we try to strengthen a valid invariant from lines
6–21. Lines 7–10 check whether there is any ‘e’ valuation and return “falsified”
together with the valuation as a counterexample. ‘e’ valuation is a concrete valuation
in LDS which violates any assertions. A candidate invariant is expected from function

462 B. Gao et al.

learnINV at line 11. The primary idea is to guess a candidate invariant in the form
of a classifier which separates the valuations labeled with ‘+’ from those labeled with
‘−’. Specifically, we adopt the LINEARARBITRARY algorithm proposed in [31], which
is built upon SVM and decision tree classification, to infer candidate invariants in the
form of arbitrary combination of conjunction or disjunction of linear inequalities. Line
12 invokes the function validate to check whether the candidate invariant φ is indeed
an invariant (i.e., it is inductive through every path in the loop). That is, we tentatively
label the node nwith the candidate and apply Algorithm 1 to propagate it through nodes
starting from n and ending with a parent of n. The invariant is inductive if and only if,
for all m such that (m, c, n) ∈ E, sp(I(m), c) ⇒ φ, which means φ is a valid invariant
and returned at line 14. Otherwise, a counterexample in the form of variable valuation
is generated and added to CE, which is further subsumed into LDS for the next round
invariant generation.

We remark that the loop invariants learned through this way are property-guided.
Although the learning algorithm adopted from [31] is guaranteed to terminate given
a finite set LDS, the overall learning process may timeout due to too many guess-
and-check iterations. We adopt a simple heuristics of conjuncting the assertion with
the current candidate as a candidate invariant for validation at line 22. This is justi-
fied intuitively as the learned invariant should be strong enough to imply the asser-
tion. For example, in contract toyDAO B shown in Fig. 1d, a candidate invariant
lock = true is generated by Algorithm 2. However, timeout occurs when sVer-
ify validates it. Applying the heuristics, the candidate invariant is strengthened to be
lock = true ∧ this.balance = oldq − amt, which is subsequently validated. Other-
wise, timeout is returned at line 24.

3.3 Overall Verification Algorithm

With the above discussion, we are ready to present the overall algorithm which is shown
in Algorithm 3. Given a smart contract C with m functions, we first construct the CFG
for each function at line 1. For each node n in each function F , we initiate the node’s
invariant with true and update them at lines 4–19. If node n is a loop head node, Algo-
rithm 2 is invoked and an invariant is returned when it is “succeed” at line 10. Other-
wise, the algorithm will return “falsified” or “timeout” at lines 12 and 14. Whenever
the invariants stabilize (i.e., reaches a fixed point), we check whether, for each node,
its invariant implies its assertion at lines 20–24. If the implication fails at any node, the
counterexample (ce) from the SMT solver that violates the node assertion is returned to
the user. If all assertions are implied by their corresponding invariants, the contract is
successfully verified.

Theorem 1. The contract is safe if Algorithm 3 returns “verified”.

Proof. The claim follows the fact that all inferred invariants are indeed invariants. There
are two ways of inferring invariants, either by Algorithm 1 or 2. In the former case, the
inferred invariant is indeed an invariant according to Proposition 1. In the latter case,
the correctness of the inferred invariant generated by genLI is ensured by function
validate in Algorithm 2 which checks whether the learned invariant is inductive. Given
that all inferred invariants are sound, Algorithm 3 is sound as it returns “verified” when
all assertions are implied by the invariants (by Definition 5). ��

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 463

In practice, Algorithm 3 is made always terminating with a timeout on the genLI
method. The complexity of the algorithm is hard to analyze due to the many com-
ponents. We thus evaluate it empirically in the next section.

4 Implementation and Evaluations

We have implemented our approach in sVerify with C++. Given a Solidity smart con-
tract, sVerify first compiles it into EVM bytecode and subsequently disassembles the
bytecode into instructions for constructing the CFG. Then, LIBSVM [5] and C5.0 [26]
are adopted for invariant learning, and Z3 SMT solver is used for invariant validation.
We conduct two sets of experiments to evaluate sVerify on real-world smart contracts.
In particular, we attempt to address the following two questions.

1. How effective is sVerify in verifying common code vulnerabilities?
2. How effective is sVerify in verifying contract-specific assertions?

All experiments are conducted on a machine with an Intel Core i7-7700HQ CPU with
8 cores clocked at 2.8 GHz, and 23.4 GB of RAM, running the system of 64-bit Ubuntu
18.04LTS. The dependancies of sVerify include Z3 (version 4.8.0) and the boost library
(version 1.68.0). As of now, it is developed for Solidity before version 0.5.19 and
Ethereum Virtual Machine (EVM) before version 1.8.21.

4.1 Verification Against Common Code Vulnerabilities

In this set of experiments, we evaluate the performance of sVerify on verifying against
common code vulnerabilities including overflow and re-entrancy. These two kinds of
vulnerabilities are particularly interesting and relevant.

First, most of the vulnerabilities (90.2% (476/528)) reported in the CVE list [9]
between 2018 and 2020 are overflow problems. The DAO attack [1], one of the most
famous attacks which caused huge monetary loss, has evidenced the importance of re-
entrancy. Furthermore, re-entrancy is a vulnerability which is associated with implicit
loops due to fallback function calls and thus would put our loop invariant generation
approach under test. Assertions for capturing overflow vulnerabilities are systematically
generated and assertions for capturing re-entrancy vulnerabilities are manually specified
regarding the balance after each call transaction like the example in Sect. 2.

For baseline comparison, we focus on three state-of-the-art verification tools Zeus,
solc-verify and VeriSol. Zeus [15] is a framework for automatic verification of smart
contracts based on abstract interpretation techniques. solc-verify [13] and VeriSol [28]
are tools that allow specification and modular verification of Solidity contracts which
are built upon the Boogie verifier.

Setup. To compare with Zeus, we adopt the test subjects reportedly analyzed by Zeus
in [15] and systematically run sVerify on them. We did not compare with the other two
tools because (1) solc-verify lacks the support of complex data types and memory mod-
els before version 0.5.0 and thus fails to verify most of the test subjects; (2) VeriSol

464 B. Gao et al.

Table 1. Comparison results between Zeus and sVerify

Zeus sVerify

Category Safe Unsafe Unk. FP FN Safe Unsafe Unk. FP FN

Overflow 234 592 9 33 5 255 549 31 4 0

Re-entrancy 803 28 4 2 20 754 50 31 0 0

Fig. 3. Functions incorrectly analyzed by tools

requires manual-specified assertions for specific properties and thus we leave the com-
parison to the second experiment. Note that the code of Zeus is not open source and thus
it is not possible to apply it to other smart contracts. Among 1524 contracts reportedly
analyzed by Zeus, 898 of them are still available online. As nested loops are yet to be
supported mainly due to the required engineering effort as well as lack of motivation -
there are relatively small amount of nested loop contracts on the blockchain. Thus, the
remaining 835 contracts are taken as the test subjects.

We further evaluate sVerify on 3897 contracts against open-source tools, solc-verify
with version of v0.4.25-boogie to include the support of arithmetic mod-overflow and
VeriSol3 of 0.1.5-alpha. Note that only 68 contracts that have more than 100 transactions
are demonstrated in the paper, which are also the same subjects discussed by solc-
verify [13]. The option of flag “arithmetic” for solc-verify is “mod-overflow”. Similar
flag with the option of “useModularArithmetic” is also set for VeriSol. Timeout for
verifying each contract is 3600 s for all tools. Furthermore, a 10 s timeout is set for each
z3 solver request.

Results. The experiment results on Zeus’s 835 test subjects are summarized in Table 1.4

Each result is either “Safe” or “Unsafe” (i.e., there is a potential issue). “Unk.” means
unknown, due to either exception or timeout. “FP” and “FN” stand for false positives
and false negatives. A false positive occurs when tools return “Unsafe” but the contract

3 Necessary assertions regarding overflow and reentrancy are inserted manually.
4 Details and benchmarks can be found at https://doi.org/10.5281/zenodo.5168441.

https://doi.org/10.5281/zenodo.5168441

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 465

Table 2. Comparison results on Overflow with solc-verify and VeriSol.

solc-verify VeriSol sVerify

Category Safe Unsafe Unk. FP FN Safe Unsafe Unk. FP FN Safe Unsafe Unk. FP FN

Overflow 34 34 0 30 0 18 12 38 1 0 41 25 2 9 0

is actually “Safe” after we manually examined the alarmed code, while a false negative
occurs when tools return “Safe” but the contract is actually “Unsafe”.

We have multiple observations based on the results. First, compared with Zeus,
sVerify’s verification results are more reliable since there are fewer false positives and
false negative. In particular, for overflow, Zeus generates 33 false positives and 5 false
negatives, whereas sVerify has 4 false positives and 0 false negative; for re-entrancy,
sVerify has 0 false positive and 0 false negative.

Since Zeus is not open source, there is no way to know why some contracts are
not correctly analyzed. We show some examples in Fig. 3 in the following which may
offer clues. Zeus generates a false alarm of overflow for function split in Fig. 3
which sends tokens to two accounts. We speculate the false alarm is due to line 3,
since examining this line alone would suggest that overflow is possible due to the arith-
metic operation. In comparison, sVerify keeps track of relationship between fee and
msg.value due to line 2 and correctly concludes there is no overflow. Zeus misses
the overflow in function processwhere the statement msg.value*taxPerc/100
may exceed the maximum value at line 6. For re-entrancy, one example Zeus misses is
the one in function testNumberRequest where attackers may input some address
to exploit the re-entrancy vulnerability at line 9. The reason of four false positives by
sVerify is because sVerify verifies each function in isolation. Namely, symbolic values
are assigned to global variables so that they may have arbitrary values. In reality, these
variables may be constrained in certain ways. For instance, startTime in function
transferFrom is only set in constructor and the overflow at line 11 is impossible.
Finally, we notice that sVerify missed reporting one re-entrancy vulnerability as sVerify
terminates the analysis once an issue is identified, e.g., an overflow issue is identified
before a re-entrancy issue is encountered.

Table 2 demonstrates the results of 68 contracts by three tools. It can be observed
that solc-verify has more false positives compared to VeriSol and sVerify. There are
multiple reasons why false alarms are generated by solc-verify. For instance, miss-
ing range assumptions for array lengths causes false alarms for loop counters [13],
which contributes the most false alarms. On the contrary, sVerify identifies more true
vulnerabilities. One example is the function multisend shown in Fig. 3. solc-verify
reports i+=1 might overflow, which is regarded as a false alarm (FP). However, sVer-
ify reports the index of variable values at line 15 might cause overflow if i is
larger than the length of array values, which is a true issue that is missed by solc-
verify. VeriSol can also find such problems if only an assertion shown at line 14 is
inserted. Only 30 contracts are successfully analyzed by VeriSol. 9 false alarms are
generated by sVerify. Besides the missing constraints on time like the case in func-

466 B. Gao et al.

Table 3. Real-world Contracts Analysis.

Contract #loc #pubfns #lpfns sVerify solc-verify

MultisigWallet 304 14 7 Unsafe Unk.

Imt 65 4 1 Safe FP

WithdrawDAO 15 2 0 FP FP

LifCrowdsale 800 37 1 Safe Unk.

WETH 50 6 0 FP FP

KyberReserve 298 19 2 Safe Unk.

TokenStore 240 20 3 Unsafe Unk.

tion transferFrom, other run-time variables also matter like the amount of Ether in
amt=msg.value*2000, which is safe as the total Ether is limited.
Efficiency sVerify successfully analyzed 804 (out of 835) contracts and 3859 (out of
3897) contracts for two sets of benchmarks, and each contract takes an average of 38.5 s
and 14.8 s respectively. On the contrary, Zeus finishes 97% of the contracts within 60s,
there is no further detailed data provided. solc-verify finishes all the contracts with an
average time of 1.24 s and VeriSol finishes 30 (out of 68) contracts with 2.28 s. Longer
time is needed to learn invariants for loops in the verification process, which is an
essential step to acquire an accurate result, but also leads to more timeouts.

4.2 Verifying Contract-Specific Assertions

While verification against common vulnerabilities is important, it is far from sufficient
for the functional correctness. In this section, we identify several high-profile smart
contracts, manually specify assertions relevant to their functional correctness and apply
sVerify to verifying those assertions. The assertions are mainly targeted at functions with
loops as those are non-trivial to verify. Since most of the loops operate on arrays, we
define several patterns specific to them, e.g., assert(ret==ARRAY MAX) to check
whether the returned value ret by the program is the maximum. The test subjects con-
sist of 7 representative contracts from accounts ranking top 1000 in terms of balance,
including the wallet contracts which receive and transfer Ether for users, like multiSig,
Imt and WithdrawDAO, the token contracts which work for token issuance and crowd-
sale, like LifCrowdsale and WETH, the decentralized exchange contracts which work
for crypto asset transaction, like KyberReserve and TokenStore. Many contracts are built
upon these contracts. Table 3 shows the results of sVerify and solc-verify, where columns
#loc, #pubfns, and #lpfns stand for lines of code, number of public functions, and
number of loop functions. The results by VeriSol are ignored because of version prob-
lem.

sVerify successfully analyzes all the contracts whereas solc-verify finishes three.
Two out of four alarms reported by sVerify are real vulnerabilities. In function
getTxIds shown in Fig. 4, the statement at line 2 overflows if the assigned value

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 467

Fig. 4. Alarmed functions by sVerify

of variable to is smaller than from (which may spawn new arrays and cost up all the
gas). The other one is in function withdraw, the assertion statement at line 7 is vio-
lated if the fallback function in msg.sender calls back to function withdraw again.
Although this, in practical runtime, the smart contract decreases the token amount of
the msg.sender at line 4, which ensures the msg.sender cannot claim more Ether
than he deserves. The other two false alarms are due to limitations on analyzing func-
tions in isolation, as explained for the constraints of time and Ether balance in Sect. 4.1.
Two false alarms are all eliminated after inserting require statements for restrict-
ing the arithmetic overflow. In comparison, solc-verify reports 3 alarms which are all
false alarms. This test shows that sVerify can be helpful to verify some contract-specific
assertions.

5 Related Work

In the last five years, several approaches have been proposed to test or verify smart con-
tracts through various techniques. For instance, the fuzzing tools reported in [2,14,30]
try to selectively generate test inputs with both static and dynamic techniques to find
critical vulnerabilities. Inevitably, they are prone to false negatives which are of great
concern for verification of smart contracts. Other works adopt symbolic techniques
to analyze smart contracts [8,20,22,24]. To avoid the path explosion problem, these
approaches usually bound the search space by, for instance, setting a limit on the num-
ber of blocks or function calls.

Unlike these approaches, Securify [27] is based on abstract interpretation and
dependency graph to produce vulnerability patterns through inference rule-based gen-
eration and analyze the correctness accordingly. However, Securify does not support
numerical properties like overflow. VerX [25] introduces delayed predicate abstraction
approach based upon symbolic execution to verify smart contracts during transaction
execution. However, VerX only supports external-call-free contracts whose behavior is
equivalent to the behavior of the contracts without callbacks. Some other approaches
like the work in [4] and Zeus [15] translated smart contracts into intermediate represen-
tations like F* programs and LLVM bitcode respectively, then leverage existing tools
for F* and Seahorn to reason about contract correctness. solc-verify [13] and verisol [28]
translate smart contracts into the Boogie intermediate language, and leverages the ver-
ification toolchain for Boogie programs for analysis. The translation is on the source
code level, which allows the users to write annotations directly in the contract. How-
ever, since Boogie was not designed for smart contracts, some features are not supported
for the translation.

468 B. Gao et al.

In this work, we propose a verification approach based on lazy annotation
and automatic loop invariant generation. A number of loop invariant generation
approaches have been proposed, including those based on abstraction interpretation [11],
counterexample-guided abstraction refinement [7] or interpolation [18], logical infer-
ence [10] and learning [17,31]. The former three depend on constraint solving and thus
suffer from scalability. We adopt the learning-based invariant generation approach in
this work.

6 Conclusion

We leverage the techniques of lazy annotation and state-of-the-art loop invariant gener-
ation method to implement the formal verifier sVerify. With the help of invariant infer-
ence, sVerify can be helpful to verify or falsify smart contracts. We evaluated sVerify on
4670 real-world smart contracts and the results show that sVerify is effective and rea-
sonably efficient. We will extend our work to contract-level verification in the future.

References

1. Dao (2016). https://www.coindesk.com/understanding-dao-hack-journalists
2. Akca, S., Rajan, A., Peng, C.: SolAnalyser: a framework for analysing and testing smart

contracts, pp. 482–489 (2019). https://doi.org/10.1109/APSEC48747.2019.00071
3. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., Rubio, A.: Analyzing smart contracts:

from EVM to a sound control-flow graph. arXiv preprint arXiv:2004.14437 (2020)
4. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi, N.:

Formal verification of smart contracts: short paper. In: PLAS, pp. 91–96. ACM (2016)
5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM TIST 2, 27:1–

27:27 (2011). http://www.csie.ntu.edu.tw/∼cjlin/libsvm
6. Chang, J., Gao, B., Xiao, H., Sun, J., Cai, Y., Yang, Z.: sCompile: critical path identification

and analysis for smart contracts. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019. LNCS, vol.
11852, pp. 286–304. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32409-4 18

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

8. ConsenSys: Mythril: Security analysis of ethereum smart contracts (2018). https://github.
com/ConsenSys/mythril. Accessed 30 May 2019. online

9. CVE: CVE list. https://cve.mitre.org/data/downloads/index.html. Accessed 4 June 2021
10. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via abductive infer-

ence. In: OOPSLA, pp. 443–456 (2013)
11. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL, pp. 191–

202. ACM (2002)
12. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes, A.J., Van-

stone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-38424-3 32

13. Hajdu, Á., Jovanović, D.: SOLC-VERIFY: a modular verifier for solidity smart contracts. In:
Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp. 161–179. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-41600-3 11

14. Jiang, B., Liu, Y., Chan, W.: ContractFuzzer: fuzzing smart contracts for vulnerability detec-
tion, pp. 259–269 (2018). https://doi.org/10.1145/3238147.3238177

https://www.coindesk.com/understanding-dao-hack-journalists
https://doi.org/10.1109/APSEC48747.2019.00071
http://arxiv.org/abs/2004.14437
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1007/978-3-030-32409-4_18
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://cve.mitre.org/data/downloads/index.html
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1145/3238147.3238177

sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning 469

15. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart contracts. In:
NDSS. The Internet Society (2018)

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

17. Li, J., Sun, J., Li, L., Le, Q.L., Lin, S.: Automatic loop-invariant generation and refinement
through selective sampling. In: ASE, pp. 782–792 (2017)

18. Lin, S., Sun, J., Nguyen, T.K., Liu, Y., Dong, J.S.: Interpolation guided compositional veri-
fication (t). In: ASE, pp. 65–74 (2015)

19. Lin, S.: K-framework Solidity (2018). https://github.com/kframework/solidity-semantics
20. Luu, L., Chu, D.H., Olickel, H., Saxena, P.: Making smart contracts smarter. In: CCS, pp.

254–269. ACM (2016)
21. McMillan, K.L.: Lazy annotation for program testing and verification. In: Touili, T., Cook,

B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 10

22. Mossberg, M., Manzano, F., Hennenfent, E., Groce, A.: Manticore: a user-friendly symbolic
execution framework for binaries and smart contracts. In: ASE, pp. 1186–1189. IEEE (2019)

23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report, Manubot
(2019)

24. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and
suicidal contracts at scale. In: ACSAC, pp. 653–663. ACM (2018)

25. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: VerX: safety
verification of smart contract. In: IEEE Symposium on Security and Privacy (2020)

26. Quinlan, J.: C5.0: an informal tutorial (2017). http://www.rulequest.com/see5-unix.html
27. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.: Securify:

practical security analysis of smart contracts. In: CCS, pp. 67–82. ACM (2018)
28. Wang, Y., et al.: Formal verification of workflow policies for smart contracts in azure

blockchain. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp.
87–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3 7

29. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper 151, 1–32 (2014)

30. Wüstholz, V., Christakis, M.: Harvey: a greybox fuzzer for smart contracts. In: ESEC/FSE,
pp. 1398–1409 (2020)

31. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI, pp. 707–721.
ACM (2018)

https://github.com/kframework/solidity-semantics
https://doi.org/10.1007/978-3-642-14295-6_10
http://www.rulequest.com/see5-unix.html
https://doi.org/10.1007/978-3-030-41600-3_7

	sVerify: Verifying Smart Contracts Through Lazy Annotation and Learning
	1 Introduction
	2 Overview Through Motivating Examples
	3 Our Approach
	3.1 Formalization of Smart Contracts
	3.2 Loop Invariant Generation
	3.3 Overall Verification Algorithm

	4 Implementation and Evaluations
	4.1 Verification Against Common Code Vulnerabilities
	4.2 Verifying Contract-Specific Assertions

	5 Related Work
	6 Conclusion
	References

