
ReLU Hull Approximation
ZHONGKUI MA, The University of Queensland, Australia
JIAYING LI,Microsoft, China
GUANGDONG BAI, The University of Queensland, Australia

Convex hulls are commonly used to tackle the non-linearity of activation functions in the veri�cation of
neural networks. Computing the exact convex hull is a costly task though. In this work, we propose a fast and
precise approach to over-approximating the convex hull of the ReLU function (referred to as the ReLU hull),
one of the most used activation functions. Our key insight is to formulate a convex polytope that “wraps” the
ReLU hull, by reusing the linear pieces of the ReLU function as the lower faces and constructing upper faces
that are adjacent to the lower faces. The upper faces can be e�ciently constructed based on the edges and
vertices of the lower faces, given that an =-dimensional (or simply =d hereafter) hyperplane can be determined
by an (= � 1)d hyperplane and a point outside of it. We implement our approach as W��LU, and evaluate
its performance in terms of precision, e�ciency, constraint complexity, and scalability. W��LU outperforms
existing advanced methods by generating fewer constraints to achieve tighter approximation in less time. It
exhibits versatility by e�ectively addressing arbitrary input polytopes and higher-dimensional cases, which
are beyond the capabilities of existing methods. We integrateW��LU into PRIMA, a state-of-the-art neural
network veri�er, and apply it to verify large-scale ReLU-based neural networks. Our experimental results
demonstrate thatW��LU achieves a high e�ciency without compromising precision. It reduces the number of
constraints that need to be solved by the linear programming solver by up to half, while delivering comparable
or even superior results compared to the state-of-the-art veri�ers.

CCS Concepts: • Security and privacy! Logic and veri�cation; • Computing methodologies!Neural
networks.

Additional Key Words and Phrases: Robustness, Neural Networks, Convexity, Polytope

ACM Reference Format:
Zhongkui Ma, Jiaying Li, and Guangdong Bai. 2024. ReLU Hull Approximation. Proc. ACM Program. Lang. 8,
POPL, Article 75 (January 2024), 29 pages. https://doi.org/10.1145/3632917

1 INTRODUCTION
Over the past decade, neural networks (NNs) have been applied to a variety of real-world applica-
tions due to their exceptional performance in solving complex problems. However, like programs,
NNs have been found to be vulnerable to security threats and unexpected inputs, posing a great
risk to application users. For example, the adversarial perturbation [Szegedy et al. 2014] can cause
NNs to make false predictions. Therefore, in addition to testing, it has been widely recognized that
NNs should be formally veri�ed.

Verifying the robustness of NNs is a challenging problem though, in part because NNs interleave
a�ne and non-linear activation layers (e.g., ReLU), leading to highly non-linear behaviors. Over the
years, researchers have proposed a variety of deterministic methods to address the non-linearity

Authors’ addresses: Zhongkui Ma, The University of Queensland, Brisbane, Australia, zhongkui.ma@uq.edu.au; Jiaying Li,
Microsoft, Beijing, China, lijiaying1989@gmail.com; Guangdong Bai, The University of Queensland, Brisbane, Australia,
g.bai@uq.edu.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART75
https://doi.org/10.1145/3632917

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0002-2392-3751
HTTPS://ORCID.ORG/0000-0003-1187-7521
HTTPS://ORCID.ORG/0000-0002-6390-9890
https://doi.org/10.1145/3632917
https://orcid.org/0000-0002-2392-3751
https://orcid.org/0000-0003-1187-7521
https://orcid.org/0000-0002-6390-9890
https://doi.org/10.1145/3632917

75:2 Zhongkui Ma, Jiaying Li, and Guangdong Bai

of activation functions for NN veri�cation. Taking ReLU function as an example, its veri�cation
methods can be grouped into two categories, i.e., exact methods that encode the exact ReLU function
using satis�ability modulo theories (SMT) or mixed integer linear programming (MILP) [Bunel et al.
2018; Ehlers 2017; Katz et al. 2017; Ruan et al. 2018; Tjeng et al. 2019], and approximate methods
that approximate the ReLU function with abstract domains [Gehr et al. 2018; Singh et al. 2018,
2019b], dual approach [Dvijotham et al. 2018b], semide�nite relaxation [Raghunathan et al. 2018],
symbolic bound propagation [Weng et al. 2018; Zhang et al. 2022], and convex hull methods [Müller
et al. 2022; Singh et al. 2019a]. The exact methods can achieve complete veri�cation but largely
su�er from scalability issues in practical scenarios. Therefore, the use of approximate methods has
become a common practice.
The core of approximate methods lies in constructing an over-approximation of the activation

function [Meng et al. 2022]. Among existing methods, the convex hull has been identi�ed as
the optimal convex approximation for the activation function [Singh et al. 2019a]. Nonetheless,
computing the convex hull itself is a prohibitively expensive task in high-dimensional spaces,
and therefore, researchers turn to constructing a convex polytope to over-approximate it. Existing
research in this area can be divided into two categories. Single-neuron approximate methods consider
the constraints between a single input and output, and typical examples include Fast-Lin [Weng
et al. 2018], CROWN [Zhang et al. 2018], DeepZ [Singh et al. 2018] and DeepPoly [Singh et al.
2019b]. Multi-neuron approximate methods, such as k-relu [Singh et al. 2019a], PRIMA [Müller et al.
2022] and OptC2V [Tjandraatmadja et al. 2020], capture the dependency among multiple inputs
and outputs to enhance precision. Despite the progress made by all these approaches, achieving a
balance between e�ciency and precision remains a challenging task.
Our work. In this work, we study the multi-neuron approximation of the ReLU hull (denoted
by "), which is the convex hull of the ReLU function (denoted by '4!*), one of the most used
activation function in existing NNs. We proposeW��LU1, a novel, e�cient and precise method
for approximating ReLU hulls.W��LU reduces the ReLU hull approximation into the problem of
computing a convex polytope e" , which over-approximates the ReLU hull of the union (- ,.) of a
given polytope - and its transformation under the ReLU function . = ReLU(-). Its key insight is
to leverage the characteristics of the ReLU function as a piece-wise linear function. In particular,
the lower faces of the ReLU hull have been formulated by combining all linear pieces of the ReLU
function, and the upper faces can be formulated by constructing another set of faces, each of which
is determined by an edge of a lower face and a vertex on the lower faces. Given a polytope - in
H-representation, W��LU takes the linear pieces of the ReLU function as the lower faces of e" ,
and �nds their edges. It then uses the double description algorithm [Fukuda 2003] to derive the
vertices of the lower faces. By determining supporting hyperplanes using each of edge-vertex pairs,
W��LU constructs the upper faces of e" (detailed in Sec. 4).

The proposed approach greatly contributes to the balance between e�ciency and precision. On
e�ciency,W��LU includes into e" the exact lower faces of the ReLU hull, which can be directly
obtained from the linear pieces of the ReLU function. With the edge of a lower face, only one vertex
needs to be �gured out to determine a new upper face, speeding up the construction of the upper
faces of e" . This also maintains a stable number of upper faces, equal to the number of edges of
lower faces. In contrast, existing methods often generate a varying number of faces proportional to
the dimension and geometry of the convex hull, leading to a potentially large number of faces (and
in turn a large number of constraints to solve in the veri�cation). On precision, the inclusion of the
exact lower faces ensures the lower bounds of the ReLU hull are included in e" , and the upper faces
are tight as each of them is determined by at least one edge and one vertex of the lower faces.

1W��LU stands for Wrapping ReLU, resembling constructing a tight approximation of the ReLU hull.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:3

We conduct both intrinsic and extrinsic studies to evaluate the e�cacy of W��LU. We �rst
investigate its precision, e�ciency, constraints complexity, and scalability by applying it to approx-
imating ReLU hulls with randomly generated input polytopes. On the input polytopes ranging
from 2d to 4d, we compare W��LU with three state-of-the-art methods, including the exact
method [Singh et al. 2019a], and two approximate methods, i.e., triangle relaxation [Katz et al. 2017]
and SBLM+PDDM [Müller et al. 2022]. The results demonstrate that it yields an approximation close
to the exact method, achieving a much higher level of precision than triangle relaxation (0.05X–
0.2X) and SBLM+PDDM (0.4X–0.7X). W��LU achieves such a high precision with much higher
e�ciency (10X–106X faster than the exact method and up to 30X faster than SBLM+PDDM). No-
tably, W��LU generates concise approximations with signi�cantly fewer constraints (reducing the
number of constraints by up to 99% for the exact method and up to 30% for SBLM+PDDM), reducing
the computation burden when using a linear programming solver for subsequent veri�cation. Fur-
thermore, W��LU can generalize to arbitrary input polytopes and remains scalable to dimensions
up to 8 (within 10 seconds) that are beyond the capability of all state-of-the-art methods.
We then integrateW��LU into PRIMA, the state-of-the-art multi-neuron veri�er, to evaluate

its capability in verifying the local robustness of NNs. We measure two metrics, i.e., the number
of samplesW��LU can verify and the time consumed for veri�cation. Our evaluation utilizes 10
representative benchmarks from MNIST and CIFAR10 datasets provided by ERAN [era 2022]. To
investigate the practicality of W��LU, we create another 12 larger-scale NNs trained over a wider
range of datasets, including MNIST, CIFAR10, Fashion-MNIST, and EMNIST, with more challenging
classi�cation tasks. These benchmarks cover both fully-connected and convolutional NNs. Our
results show thatW��LU can verify a comparable number of samples to PRIMA but with higher
e�ciency (up to 50% reduction of veri�cation time). We further examine the factors contributing
to the reduction, and �nd thatW��LU generates much fewer constraints within half of the time
PRIMA spends, and subsequently reduces the constraint solving time by up to half.
Contributions. This paper makes the following contributions.

• We focus on the ReLU hull approximation problem and study the geometry characteristics
of the ReLU hull. Based on this, we propose a new perspective of ReLU hull approximation
through identifying the upper faces based on the lower faces derived from the piece-wise
ReLU function.

• We developW��LU, a novel, e�cient, and precise method based on locating adjacent faces
through incrementally considering output coordinates to approximate the ReLU hull.

• We implementW��LU and evaluated its precision, e�ciency, constraints complexity, and
scalability. It is also integrated into PRIMA and applied to verify large-scale ReLU NNs.

Notation. Throughout this paper, we use 0, 1, 3 , B , C , G ,~, V , _ to denote scalar variables, a, b , x ,~ to
denote vectors, andG to denote a matrix.G 9 is the 9-th row vector ofG and 1 9 is the 9-th element of
b . � , � , !," , % ,& ,- , . denote polytopes or sets. We denote the set {1, 2, · · · ,=} as [=] for simplicity.
For convenience, we reuse set intersect operator \ to denote constraint combining operation. For
example, if - = {(G1, G2) |G1 > 0, G2 < 1}, then - \ {(G1, G2) |G1 + G2 > 1} = {(G1, G2) |G1 > 0, G2 <
1, G1 + G2 > 1}.

2 PROBLEM DEFINITION AND APPROACH OVERVIEW
To ease understanding, we present an overview of W��LU before diving into the details. We
present the computational geometry preliminaries on convex polytopes (Sec. 2.1), a de�nition of
the ReLU hull (Sec. 2.2), and illustrate our method of approximating the ReLU hull with a running
example (Sec. 2.3).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:4 Zhongkui Ma, Jiaying Li, and Guangdong Bai

Fig. 1. The polytope - in (G1, G2)-space and the union of two lower faces (- ,~1) in (G1, G2,~1)-space under
ReLU function ~1 = ReLU(G1). The do�ed arrows stand for the ReLU transformation.

2.1 Preliminaries of Convex Polytopes
A convex polytope can be represented by either its H- or V-representation. In the literature, the
H-representation is commonly used to verify the neural network by linear programming, while the
V-representation is essential for constructing ReLU hull approximation. We give the de�nitions of
these two representations below.

De�nition (H-representation of polytope). A polytope can be represented by a set - ✓ R= de�ned
by a system of linear constraints - = {x 2 R= | Gx + b � 0}, where G 2 R<= and b 2 R= .

De�nition (V-representation of polytope). A polytope can be represented by a set - ✓ R= de�ned
by a set of points + ⇢ R= , called vertices of - , such that - = {Õ<

8=1 _8v8 | v8 2 + ,
Õ

8 _8 = 1, _8 2
R, 8 2 [<]}, where< is the number of vertices.

When presentingW��LU’s approximation process, the :-face is referred to for describing our
algorithm in high dimensional spaces (Sec. 4.1). Therefore, we give its de�nition below.

De�nition (:-face). A :-face (: 2 [=]) � of a =d polytope - ✓ R= is a :d subset � ✓ - satisfying
= � : linearly independent constraints with equality.

2.2 ReLU Hull and a Running Example
Given a set of points, the convex hull is the minimal convex polytope that contains all these points.
We give the de�nition of the convex hull for ReLU below.

De�nition (ReLU Hull). Given a bounded convex polytope - 2 R= of (G1, G2, · · · , G=) as the domain
and its image . = ReLU(-) 2 R= of (~1,~2, · · · ,~=) = (ReLU(G1), ReLU(G2), · · · , ReLU(G=)) under
the ReLU function, the convex hull" 2 R2= of the graph (- ,.)2 is called ReLU hull.

We assume the polytope- is given in its H-representation. Fig. 1 shows a 2d polytope as a running
example. In it,- = {(G1, G2) | G1+G2 � �2, G1�G2 � �2, �G1+G2 � �2, �G1�G2 � �2, �G2 � �1.2},
shown in Fig. 1-a), and . = {(~1,~2) | (G1, G2) 2 - ,~1 = ReLU(G1),~2 = ReLU(G2)} whose ~1
dimension is shown in Fig. 1-b). The goal of W��LU is to obtain an approximation e" to the ReLU
hull" of the input polytope - in (G1, G2,~1,~2)-space, i.e., e" ◆ " ◆ (- ,.).

2 (- ,.) = (- , ReLU(-)) denotes the graph of the ReLU function, i.e., the set of all the points (G1, · · · , G= , ReLU(G1) , · · · ,
ReLU(G=)) , where (G1,G2, · · · ,G=) 2 - .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:5

N

Y
 crosses ?

Y N
?

Compute lower faces Identify vertices Determine edges

, , , , , , , , ,

Determine supporting planes via
and construct constraints

Add constraints of to

Construct Constraints
 and

, , ,

Fig. 2. The overall workflow of W��LU on the running example

W��LU incrementally constructs the ReLU hull approximation for a given input polytope by
considering one output dimension at a time. It �rst takes one output dimension and constructs an
approximation for the convex hull of the input together with that dimension. The approximation is
later used as the input for the next iteration when considering another output dimension. Below
we explain this further using our running example.

2.3 Approach Illustration with the Running Example
Without losing generality, W��LU �rst chooses ~1 and constructs an approximation, denoted
by e"1, for the convex hull of (- ,~1) ⇢ (G1, G2,~1)-space, as shown in Fig. 1-b). Taking e"1 as the
input, W��LU then constructs an approximation, denoted by e"1,2, for the convex hull of (- ,.) ⇢
(G1, G2,~1,~2)-space. This new approximation e"1,2 serves as the �nal approximation for" . Since
the procedure in obtaining e"1,2 is similar to e"1, we only discuss the detail in constructing e"1 in
the remaining of this section.

To construct e"1, W��LU starts with the lower faces, %1 and %2 in Fig. 1-b), which are derived by
- and two linear pieces of~1 = ReLU(G1), and utilizes their edges � s and vertices Es to construct the
supporting plane where the faces of e"1 locate. It obtains a polytope formulated by the constraints
of these lower faces and the supporting planes and uses it as the convex approximation e"1 to"1.
The main procedure of our method consists of �ve steps, as shown in Fig. 2. Below we use the
running example to illustrate each step.

2.3.1 Step 1: Computing two lower faces. ReLU is a piece-wise linear function which is separated
into linear pieces by the non-di�erentiable points which have G8 = 0 in any dimension 8 . Back to
the example, when applying ReLU to G1, the resulting polyhedron indeed consists of two parts due
to the two pieces of ReLU (in Fig. 1-b):

%1 : - \ {(G1, G2,~1) | G1 0,~1 = 0}, %2 : - \ {(G1, G2,~1) | G1 � 0,~1 = G1}.

Given the convexity of ReLU, %1 and %2 are the lower faces of "1 (detailed proof is in Sec. 3.2).
Therefore, %1 and %2 are kept as the lower faces of e"1.

2.3.2 Step 2: Determining open edges of lower faces. In this step, our goal is to pinpoint the edges
that %1 and %2 share with potential upper faces. Given the fact that every edge must be shared and
only shared by two faces, there are two types of edges existing, i.e., the edges shared by %1 and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:6 Zhongkui Ma, Jiaying Li, and Guangdong Bai

%2 themselves (referred to as closed edges), and the edges shared by %1 or %2 with some unknown
faces (referred to as open edges), which are the upper faces to be found.

These open edges are transformed from the edges of - by the linear pieces of the ReLU function.
Therefore, we have open edges of %1:3

� 11 = %1 \ {(G1, G2,~1) | G1 + G2 = �2}, � 21 = %1 \ {(G1, G2,~1) | G1 � G2 = �2}, � 31 = %1 \ {(G1, G2,~1) | G2 = 1.2, },

and those open edges of %2 are

� 12 = %2 \ {(G1, G2,~1) | G1 � G2 = 2}, � 22 = %2 \ {(G1, G2,~1) | G1 + G2 = 2}, � 32 = %2 \ {(G1, G2,~1) | G2 = 1.2}.

2.3.3 Step 3: Identifying vertices of ReLU Hull. In this step, we proceed to pinpoint the vertices of
the ReLU hull"1, taking %1 and %2 as inputs. There are two types of vertices on the boundary of
- (proved in Sec. 3.3), i.e., (i) those that are transformed from vertices of - on the open edges (the
solid vertices in Fig. 1-b), and (ii) those that are introduced by the non-di�erentiable points (i.e., (0,
0, *) in our running example) on the closed edges (the hollow vertex in Fig. 1-b).
For (i), we apply the double description algorithm [Fukuda 2003] on the H-representation of

- , which gives (�2, 0), (�0.8, 1.2), (2, 0), (0.8, 1.2) and (0,�2). They are applied with the ReLU
function, resulting in the transformed points in the (G1, G2,~1)-space as follows,

E11 = (�2, 0, 0), E21 = (�0.8, 1.2, 0), E12 = (2, 0, 2), E22 = (0.8, 1.2, 0.8),
where E11, E

2
1 2 %1 and E12, E22 2 %2. For vertices of (ii), we get one newly-introduced vertex (0, 1.2, 0)

by transforming the intersection of - and non-di�erentiable point of ReLU function to (G1, G2,~1)-
space.

Fig. 3. An illustration of Step 4 using � 11 as an
example: the plane !3 is determined by � 11 and E12
from four candidate planes

2.3.4 Step 4: Pinpointing supporting planes of faces.
After Step 3, we have obtained two lower faces, six
open edges and one closed edge, four vertices that
are only on open edges and two vertices on closed
edges. Based on them, this step determines the sup-
porting planes of the faces of e"1, using which the
constraints speci�ed by the upper faces can be de-
rived. To this end, we enumerate each combination
of an open edge and a vertex, denoted by ! = � ⇥ E .
That is, one supporting plane ! is determined by one
open edge � and one vertex E outside of � . We note
that here we derive the supporting plane rather than
the precise face, as computing the boundaries of the
face is expensive and we just need the constraints
derived by the supporting plane to formulate the
H-representation of e"1 (see Step 5).
In our running example, Step 4 obtains 24 candi-

date planes, i.e. � B1 ⇥ EC2 and � B2 ⇥ EC1 where B 2 [3]
and C 2 [4], where only nine of them are unique. From them, we �lter out the planes that are not
valid supporting planes, i.e., those that split %1 or %2 into two halves. In this way, �ve planes are
kept, where two of them indicate %1 and %2, i.e.,

!1 : ~1 = 0, !2 : ~1 = G1 .

3While there are �ve candidate groups of constraints generated from the �ve constraints of - , two infeasible ones, i.e.,
�G1 + G2 � �2 and �G1 � G2 � �2, which lead to ;, are excluded.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:7

The other three, i.e.,

!3 : 2 + G1 + G2 = 2~1, !4 : 2 + G1 � G2 = 2~1, !5 : � 1.2 + G2 = 0,

indicate the planes of three upper faces, denoted by %3, %4, and %5. Fig. 3 takes an open edge � 11
as an example to illustrate this process. The plane determined by � 11 and E

1
2 is a valid supporting

plane, as all vertices lie at one side of it. In contrast, the plane determined by � 11 and E22 is discarded,
as it splits %2.

2.3.5 Step 5: Constructing constraints using supporting planes. Taking as input the �ve supporting
planes, !1, !2, !3, !4, and !5 found by Step 4, this step converts them into linear constraints. This is
achieved by ensuring that all vertices satisfy them, and the following constraints are obtained.

⇠1 : ~1 � 0, ⇠2 : ~1 � G1, ⇠3 : 2 + G1 + G2 � 2~1, ⇠4 : 2 + G1 � G2 � 2~1, ⇠5 : 1.2 � G2 � 0.

Then, we take it as an approximation to"1, denoted by e"1 = {(G1, G2,~1) | ⇠1,⇠2,⇠3,⇠4,⇠5}.
With these �ve steps, our method can obtain an approximation e"1 ◆ "1 ◆ (- ,~1). The overall

process is iterated with each output coordinate until all are considered.

3 FORMAL FOUNDATION OF OUR APPROACH
In this section, we discuss the intrinsic properties of the ReLU hull. We organize them into �ve
theorems (Theorem 3.1-3.5), which formulate the formal foundation for our proposed approach.
We consider the general cases for the ReLU hull " in the (G1, G2, · · · , G=,~1,~2, · · · ,~=)-space

with a given bounded polytope - in the (G1, G2, · · · , G=)-space. Therefore, we assume that all G8s’
values (1 8 =) cross zero, thereby avoiding trivial scenarios unless explicitly stated otherwise.
Whenever such trivial scenarios occur in any dimension, they can be easily handled through linear
transformation. This assumption is formalized as follows.

Assumption 1 (Non-trivial Input Polytope). For each dimension 8 2 [=], there exist two points in -
satisfying G8 > 0 and G8 < 0.

3.1 Linear Pieces of (- ,.)
The �rst property is about the piece-wise linearity of (- ,.). It has been studied and applied by
several previous studies [Bunel et al. 2019; Katz et al. 2017; Wang et al. 2021] and is also leveraged
for exact/approximate ReLU hull algorithms [Müller et al. 2022; Singh et al. 2019a].

T������ 3.1 (L����� P�����). (- ,.) ⇢ R2= has at most 2= linear pieces, each of which is

&� = - \
Ÿ
82�

{(x,~) | G8 0,~8 = 0} \
Ÿ
82� ⇤

{(x,~) | G8 � 0,~8 = G8 }, (1)

where � ✓ [=], � ⇤ = [=] \ � , and (x,~) = (G1, G2, · · · , G=,~1,~2, · · · ,~=).
P����. Each orthant of R2= space that satis�es ~8 � 0 for any ~8 has a linear piece of (- ,.).

There are 2= orthants that satisfy this condition, and (- ,.) therefore has at most 2= linear pieces.
When all G8s (1 8 =) cross zero, (- ,.) has the maximum number of linear pieces.

Next, we consider each orthant that has a linear piece, and derive Formula (1). If the orthant
takes G8 0 (8 2 �), the linear piece has the constraint ~8 = 0; if the orthant takes G8 � 0 (8 2 � ⇤),
the linear piece has the constraint ~8 = G8 . These two constraints, together with - , comprise of a
linear piece of (- ,.), denoted by &� . ⇤

Example. Considering the case of (- ,.) ⇢ (G,~)-space, two linear pieces are & {1} = - \
{(G,~) | G 0,~ = 0} and &; = - \ {(G,~) | G � 0,~ = G}. For the case of (- ,.) ⇢ (G1, G2,~1,~2)-
space, four linear pieces are & {1} = - \ {(G1, G2,~1,~2) | G1 0,~1 = 0, G2 � 0,~2 = G2},

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:8 Zhongkui Ma, Jiaying Li, and Guangdong Bai

& {2} = - \ {(G1, G2,~1,~2) | G1 � 0,~1 = G1, G2 0,~2 = 0}, & {1,2} = - \ {(G1, G2,~1,~2) | G1
0,~1 = 0, G2 0,~2 = 0} and &; = - \ {(G1, G2,~1,~2) | G1 � 0,~1 = G1, G2 � 0,~2 = G2}.
All properties of the ReLU hull that we discuss in Sec. 3.2 to Sec. 3.4 are centered around the

linear pieces of (- ,.). In Sec. 3.2, we show that all these linear pieces are the lower faces of the
ReLU hull, and in Sec. 3.3, we prove that all their vertices are exactly all vertices of the ReLU hull.

3.2 Constraints Specified by Lower Faces of ReLU Hull
We �rst show that those linear pieces derived in Theorem 3.1 are exactly the lower faces of" , and
the constraints derived by them give lower bounds of all output variables ~8s.

T������ 3.2 (L�����F��� C����������). The ReLU hull" takes all linear pieces in Theorem 3.1
as lower faces, each of which derives one of the following constraints, for 1 2 [=],

~8 � 0, ~8 � G8 . (2)

The underlying reason that" has all linear pieces of the ReLU function as its lower faces is the
convexity of the ReLU function. With this insight, below we give a proof for the theorem.

P����. First, we have that ~8 = 0 and ~8 = G8 are supporting hyperplanes of" , because all points
of" satisfy ~8 � 0 and ~8 � G8 by ReLU transformation and there exist points on ~8 = 0 or ~8 = G8 .
Second, we prove that ~8 = 0 and ~8 = G8 are faces of " . For each hyperplane ~8 = 0 or ~8 = G8 ,

there exist at least = linearly independent points of" on it, given that each hyperplane contains
one linear piece in Theorem 3.1, and this linear piece has at least = such points. ⇤

We remark that these constraints are commonly utilized in approximating the ReLU hull, such
as the triangle relaxation [Katz et al. 2017].
Example. Considering our running example, two constraints ~1 � 0 and ~1 = G1 speci�ed by the
two lower faces %1 and %2 are shown in Fig. 1.

3.3 Vertices of ReLU Hull
Theorem 3.2 has established that all linear pieces are the lower faces of the ReLU hull. Due to this,
their vertices are naturally the vertices of the ReLU hull. Then we have the following theorem.

T������ 3.3 (R�LU H��� V�������). The vertices+" of" is the union of vertices+&� of all linear
pieces &� in Theorem 3.1, i.e.,

+" =
ÿ
�✓ [=]

+&� . (3)

P����. First, we prove +" ◆
–

�✓ [=] +&� . Because" takes each linear piece in Theorem 3.1 as a
face, all vertices of these linear pieces are contained in vertices of" .

Second, we prove+" \–�✓ [=] +&� = ;. Assuming there exists an extra vertex of" outside these
linear pieces, a smaller convex polytope can be formulated by using only the vertices of all linear
pieces, leading to a contradiction that" is the convex hull. ⇤

Next, we trace back the vertices +" to - which is in the input space of the ReLU function, to
�nd those vertices that can be used to determine the upper faces. All vertices of " are either
transformed from the vertices of - or introduced by the non-di�erentiable points of the ReLU
function. Speci�cally, we have the following theorem.

T������ 3.4 (S������ �� R�LU H��� V�������). Given a vertex E of" , E is transformed under
the ReLU function from one or many of the following three types of points,
(1) the vertex of - ,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:9

(2) the intersection of a coordinate axis and the boundary of - , and
(3) the origin.

P����. By Theorem 3.3, the vertices +" of" is the union of vertices +&� of all linear piece &� ,
so here we only need to discuss the sources of vertices +&� . By Theorem 3.1, such a vertex E 2 +&�

should satisfy 2= constraints in three sets of 1 {G 9x + b 9 = 0 | 9 2 [<]}, 2 {~8 = 0 | 8 2 [=]}, and
3 {~8 = G8 | 8 2 [=]}, because E is in the 2=d (G1, · · · , G=,~1, · · · ,~=)-space. Through identifying
the sources of these 2= constraints, we can �nd all sources of E .
Because E is of one linear piece, it satisfy = constraints of ~8 = 0 or ~8 = G8 for each 8 2 [=]

from 2 and 3 by the de�nition of linear piece (Formula (1)). Then, we only need to consider the
sources of the other = constraints. For source (1), these extra = constraints are all from 1 and E is a
vertex of - in (G1, · · · , G=)-space. For source (2), there are extra< (< < =) constraints from 1 , and
the other = �< constraints are from 2 or 3 . Because E satis�es< constraints of 1 , it is on the
boundary of - . On the other hand, for some coordinate 8 , ~8 = G8 and ~8 = 0 can both hold, so the
vertex is on the axis. For source (3), these extra = constraints are all from 2 or 3 . Then, E satis�es
all 2= constraints of 2 and 3 , so E is the origin. ⇤

Example. For our running example, E1⇤ and E2⇤ are vertices from the intersection of axis G1 and the
boundary (in the line G2 = 1.2) of - in (G1, G2)-space. Vertices E12 , E22 , E11 , E21 , and E2⇤ are from the
vertices of- in (G1, G2)-space. Note that E2⇤ can be led to from two sources, (1) and (2) in Theorem 3.4.
The origin is not a vertex in (G1, G2,~1)-space but a vertex in (G1, G2,~1,~2)-space. Note that all
vertices are on the linear pieces and on the boundary of - except for the origin.

Remark. Among these three types of vertices, W��LU can exclude some for e�ciency. First,
according to Formula (1), the origin is at the intersection of all low faces. Based on Assumption 1,
it must be in the interior of - , and cannot be in any upper face. Otherwise, such an upper face will
split" . Therefore, based on Theorem 3.4, all possible vertices that we rely on to identify the upper
faces are transformed from a point on the boundary of - excluding the origin, i.e., (1) and (2) in the
theorem. In fact, we can further exclude the vertices of (2) as each of them can be replaced by at
least one vertex of (1) which is in the same face. We defer the proof of this to Sec. 5.3.

3.4 Constraints Specified by Upper Faces of ReLU Hull
This section discusses the constraints derived by the upper faces of the ReLU hull. They either
provide upper bounds to at least one output variable ~8 or do not contain any ~8 . A constraint
without any ~8 is from one constraint of the H-representation of - . The following theorem reveals
the form of the constraints speci�ed by upper faces.

T������ 3.5 (U�����F��� C����������). Given the H-presentation of - , i.e., {(G1, G2, · · · , G=) |
Gx + b � 0,G 2 R<=, b 2 R=}, all constraints speci�ed by the upper faces of" are of the following
form,

G 9x + 1 9 �
’

18=
V81~8 + V82 (~8 � G8), (4)

where 9 2 [<], 8 2 [=], and V8: 2 R (: 2 [2]) are constants.
P����. First, we discuss the general form of the supporting hyperplane speci�ed by a face of" .

The key point is that each face contains at least one open edge, and we construct a hyperplane
to contain this open edge. Each open edge is the intersection of a lower face and a boundary of
- . Each lower face is a linear piece of (- ,.) with Formula (1) and is the intersection of ~8 = 0 or
~8 = G8 for each dimension 8 2 [=]. The boundary of - is one of hyperplane G 9x + 1 9 = 0 by the
constraints of - . Therefore, each open edge is the intersection of ~8 = 0 (or ~8 = G8) for any 8 and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:10 Zhongkui Ma, Jiaying Li, and Guangdong Bai

G 9x + 1 9 = 0 for one 9 . Then, V80 (G 9x + 1 9) =
Õ

18= V81~8 + V82 (~8 � G8) with parameters V80, V81,
and V82 represents a hyperplane crossing an open edge.
Second, we give the general form of the supporting hyperplane speci�ed by an upper face of

" . We aim to prove that when V80 < 0, the general form implies those supporting hyperplanes
speci�ed by upper faces. When V80 = 0,

Õ
18= V81~8 + V82 (~8 � G8) = 0 can imply all supporting

hyperplanes ~8 = 0 and ~8 = G8 determined by lower face with V81 = 0 or V82 = 0. Additionally, with
V81V82 < 0, all supporting hyper planes

Õ
18= V81~8 + V82 (~8 � G8) = 0 can be derived by ~8 = 0

and ~8 = G8 and are unnecessary. Therefore, to exclude the unnecessary cases of lower faces, the
hyperplane (G 9x + 1 9) =

Õ
18= V81~8 + V82 (~8 � G8) without V80 represents the general form of the

supporting hyperplanes speci�ed by an upper face.
Last, we derive Formula (4) based on the form of the supporting hyperplane. Considering the

origin is in- and is a vertex of" by Theorem 3.4, the origin should satisfy the upper-face constraint.
We substituting the origin in the supporting plane and have Gx + b � 0 by constraints of - and
V81~8 + V82 (~8 � G8) = 0. Therefore, we take �, and the constraint determined by the supporting
plane is G 9x + 1 9 �

Õ
18= V81~8 + V82 (~8 � G8). ⇤

Example. Considering our running example in Fig. 3, an upper face in the hyperplane !3 is
determined by � 11 and E12 and has a form of 2 + G1 + G2 = 2~1, which contains the open edge � 11 , i.e.,
the intersection of 2+G1+G2 = 0 and~1 = 0. The constraints⇠3 determined by !3 is 2+G1+G2 � 2~1.
Noted that 2 + G1 + G2 � 0 is a constraint of - and 2 + G1 + G2 � 2~1 is consistent with the general
form of upper-face constraints in Theorem 3.5.
Note that Formula (4) can be extended to include the constraints of lower faces (Theorem 3.2),

by introducing a new parameter V80 indicating V80 (G 9x + 1 9), so that it can represent a general
constraint of the ReLU hull. We highlight that the derived form of the ReLU hull is so far the most
general one. The state-of-the-art method for ReLU hull approximation [Tjandraatmadja et al. 2020]
produces a similar form, but it entails a premise that the input - must be a hyperrectangle and it
considers only one output coordinate.
Finding an optimal combination of the parameters V8: in Formula (4) results in a face of the

exact ReLU hull. However, this is a computationally expensive task, because it is well known
that the number of constraints typically is an exponential multiple of the dimensions of the
variables [McMullen 1970]. Therefore, we propose to determine each of them individually, and
each time a vertex is taken to �nd an V8: by determining the hyperplane which contains an upper
face (detailed in Sec. 4). This process does not guarantee to identify the optimal combinations, but
retains soundness and tightness of the over-approximation (analyzed in Sec. 5.1).

4 WRALU: A RELU HULL OVER-APPROXIMATION APPROACH
In this section, we detailW��LU for general cases, including the main algorithm (Sec. 4.1), and two
innovations (Sec. 4.2), which boosts the e�ciency of pinpointing the upper faces.

4.1 The Main Algorithm
Algo. 1 outlines the main process of W��LU without optimization applied. It takes as input a
polytope - and an output coordinate order of 1, 2, · · · , =, denoted by $A34A , and outputs another
polytope e" as a ReLU hull approximation. Both - and e" are in H-representation. e" is constructed
in an iterative manner by each output coordinate (the main loop dominated by line 3), and it stores
the current approximation of the ReLU hull (in a lower dimension) during the iteration (line 22).
W��LU starts with initializing e" with the input polytope - . During each iteration, it checks

whether the ReLU for the current dimension 8 is a trivial case, i.e., all G8 ’s values are either non-
positive or non-negative. If so, it can construct the exact convex hull in the current dimension (lines

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:11

7–8) and �nish the current iteration. Otherwise, an approximation is necessary. In fact, our running
example is a non-trivial case, and the process below is a generalization of the �ve steps in Sec. 2.3.

Algorithm 1:WraLU Basic(- , $A34A)
1 +B ⌧4C+4AC824B (-) ;
2 e" - ;
3 while 8 ⌧4C#4GC$DC?DC⇡8<4=B8>= ($A34A)

do
4 �B ;;
5 = ⌧4C⇡8<4=B8>= (e") ;

// Transform vertices in new dimension
6 Update+B by applying ReLU on coordinate ~8 ;

// Trivial cases
7 if isNonPositive(8) then e" .033 (~8 = 0) ;

continue;
8 if isNonNegative(8) then e" .033 (~8 = G8) ;

continue;
// General cases

9 e" 0 ;;
// Get two lower faces

10 %1 e" \ {G8 0, ~8 = 0};
11 %2 e" \ {G8 � 0, ~8 = G8 };

// Add constraints specified by two
lower faces

12 e" 0 .add({~8 � 0, ~8 � G8 });
// Determine edges

13 foreach constraint ax + b~ + 2 � 0 in e" do
// Get the (= + 8 � 1)d hyperplane

specified by the constraint
14 ? ax + b~ + 2 = 0;
15 if %1 \ ? < ; then �B .add(?) ;
16 if %2 \ ? < ; then �B .add(?) ;

// Determine supporting hyperplanes and
add derived constraints

17 foreach � in �B do
18 foreach E in+B do

// Determine a supporting
hyperplane

19 ! � ⇥ E;
20 if ! splits %1 or %2 into halves then

continue;
21 e" 0 .add(⌧4C⇠>=BCA08=C (!,+B));

// Update the approximation
22 e" e" 0
23 return e" ;

W��LU �rst obtains the constraints ~8 � 0
and ~8 � G8 derived by the two lower faces %1
and %2 (line 12), and then attempts to �nd ad-
ditional supporting hyperplanes speci�ed by
upper faces (lines 13–21). To do this, it deter-
mines the (=+8�2)-faces (edges in general high-
dimensional space) and vertices, and leverages
them to obtain the (=+8�1)d supporting planes
in which the upper faces are located. Speci�-
cally, we only need the supporting planes of
these (=+8�2)-faces, and they are stored in the
set �B that is calculated based on e" in the pre-
vious iteration (lines 13–16). Note that W��LU
checks whether (=+8�2)-face ? is an open edge
by checking %1 \ ? < ; and %2 \ ? < ; (lines
15 and 16). A lazy selection is introduced to
avoid this costly operation (Sec. 4.2.1). The ver-
tices are obtained by applying the ReLU trans-
former to the vertices of the input polytope
(line 6), which is handled in an iterative man-
ner (Sec. 4.2.2). The rationale of this step is dis-
cussed in Sec. 4.2.2, and its correctness is proved
in Sec. 5.3. W��LU then updates the approxi-
mation e" by e" 0 which contains the constraints
that do not split %1 or %2 into halves, i.e., these
constraints represent supporting planes (lines
20 and 21). The iteration terminates after every
output dimension ~8 has been enumerated, and
W��LU outputs a sound over-approximatione" of the ReLU hull (- ,.).
Complexity. Algo. 1 takes as input the double
description, i.e., the constraints and vertices, of
a 3-dimensional polytope, which is a premise
consistent with PRIMA [Müller et al. 2022].
Given =0 constraints and =E vertices, W��LU
has a time complexity of$ (32=0=E). First, lines
13–16 in Algo. 1 loop all constraints, which has

a complexity of $ (=0). Second, lines 17–21 iterate all pairs of edges and vertices ($ (=0=E)) to
calculate V ($ (3)) in line 20, so lines 17–21 have a complexity of $ (3=0=E). Therefore, the overall
time complexity is $ (32=0=E).

4.2 Two Innovations for E�iciency
W��LU greatly leverages the characteristics of the ReLU hull for its e�ciency. Besides using the
linear pieces as the lower faces (lines 10–11), it is worth highlighting that two innovations regarding
the identi�cation of the upper-face constraints for e�ciency.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:12 Zhongkui Ma, Jiaying Li, and Guangdong Bai

4.2.1 Innovation #1: Lazy Selection with Incremental Calculation of V8:s. Algo. 1 involves three
condition checkings that are costly, andW��LU addresses this by introducing a lazy selection based
on V8:s (in Formula (4). First, to determine the conditions %1 \ ? < ; and %2 \ ? < ; (lines 15 and
16), a naive but costly way is to calculate the exact %1 and %2. Although the H-representation of %1
and %2 can easily obtained by the intersection of e" with the ReLU constraints (G > 0) ^ (~ = G)
or (G < 0) ^ (~ = 0), checking %1 \ ? < ; and %2 \ ? < ; is costly due to the redundancy in the
intersection. Instead,W��LU skips the condition checking and adds both potential open edges into
�B . This causes two hyperplanes being constructed in line 19. One of them is not tight enough, and
it leads to constraints with a V8: = 0, while the tighter one has a positive V8: . Based on this,W��LU
conducts �ltering after line 19.

Second, checking the condition whether ! splits %1 or %2 into halves (line 20) may entail checking
whether all vertices of" are in the same side of !. This can be costly too, as to do this,W��LU has
to calculate all vertices. To alleviate it, for each open edge � in �B (line 17),W��LU calculates all
planes that are determined by � and each of the vertex in +B . This leads to |+B | constraints of the
form in Formula (4). From them, W��LU keeps only the constraint with the least V8: in line 21.
Work�ow. Innovation #1 is based on (1) identifying the value of V8: that provides a sound con-
straint (to be formulated by Theorem 5.2), and (2) �ltering out the constraints with any non-existing
open edge indicating by zero value of V8: (to be formulated by Theorem 5.3).
The main idea is to construct a parametric function with one parameter V8: for the current

~8 to represent a hyperplane that crosses a potential open edge.W��LU valuates this parameter
using every vertex (line 19), resulting in several candidate hyperplanes with di�erent values of V8: .
After that, it selects the one with an V8: value that satis�es the conditions in lines 15, 16, and 20
to be the upper face. Below, we use the case of 8 = 1 to demonstrate the procedure and brief its
soundness. The procedure and analysis are directly applicable to other iterations. For conciseness,
the parameters V1 and V2 omit the subscripts that indicate the dimension.

First, in lines 15 and 16, W��LU skips the checking of the two conditions, causing two potential
open edges being added into the edge set �B . These two edges later are used for constructing
hyperplanes, as represented by the following two parametric functions,

G 9x + 1 9 = V1~1, G 9x + 1 9 = V2 (~1 � G1). (5)

Then, a process of determining V1 and V2 is introduced to replace the operation in line 20, and
achieves its purpose of �ltering out a ! that does not split %1 and %2 into halves. G 9 and 1 9 are
speci�ed by the 9-th constraint of - .W��LU substitutes x and ~1 with each vertices. Those vertices
with ~1 < 0 will give all candidate values of V1, and those vertices with ~1 < G1 will be used to
identify all candidate values of V2 by the following equations,

V1 =
G 9x + 1 9

~1
, V2 =

G 9x + 1 9

~1 � G1
. (6)

V1 and V2 take the least value of their candidate values, respectively, to generate a sound constraint
(to be proved in Theorem 5.2).

With the values of V1 and V2 determined, we can obtain two sound constraints derived by
Formula (6) as follows (formulated in Theorem 5.2),

G 9x + 1 9 � V1~1, G 9x + 1 9 � V2 (~1 � G1). (7)

Type 1 redundant constraints. One of the two constraint candidates in Formula (7) is redundant,
as it is not as tight as the other.We refer to this type of redundant constraints as Type 1, to distinguish
them from another type resulted from the redundant constraints of the input polytopes (to be
discussed soon in this section). Such constraints can be omitted without a�ecting the de�nition of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:13

the polytope. The lazy �ltering of W��LU is conducted to �lter out Type 1 redundant constraints,
by considering the following two cases.

• If both of V1 and V2 are zero, the two constraints are identical and we add the constraint
G 9x + 1 9 � 0 in e" 0 (line 21).

• If one is zero and one is positive, the parametric function with the former indicates a non-
existing edge (discussed in Sec. 5.3). Therefore, we select the constraint with positive V and
add it in e" 0 (line 21).

Both cases lead to one of the constraints in Formula (7) being selected, and thus this process is
equivalent to operating lines 15 and 16 (to be proved in Theorem 5.3). We highlight that during
the iteration, the number of upper-face constraints is stable, because W��LU replaces the original
constraints with one of the two constraint candidates. This results in the number of constructed
constraints being the same as that of the constraints of the input polytope - , if not counting the
lower-face constraints.
Type 2 redundant constraints. Another type of redundant constraints stems from the input

polytope whose constraints are generated by DeepPoly [Singh et al. 2019b]. We refer to them as
Type 2 redundant constraints. The Type 2 redundant constraint G 9x + b 9 � 0 causes V1 and V2
both positive, which is di�erent from the non-redundant constraints of - (see the two cases in
Type 1 handling). This makes it infeasible to determine which of these two constraints is tighter,
so W��LU keeps the constraint G 9x + 1 9 � V81~1 + V82 (~1 � G1) rather than both of them. The
rationale is because vertices of" are on lower faces and cannot take both of ~8 and ~8 � G8 being
non-zero. Speci�cally, those vertices with ~1 = G1 satisfy G 9x + 1 9 � V81~1 where V82 (~1 � G1) = 0,
and those with ~1 = 0 satisfy G 9x + 1 9 � V82 (~1 � G1) where V81~1 = 0. Therefore, the construction
of the constraint G 9x + 1 9 � V81~1 + V82 (~1 � G1) retains the soundness.
Example. We use our running example to show the process of determining the constraint ⇠3.
Firstly, we choose the constraint 2 + G1 + G2 � 0 of - and set two constraint candidates 2 +
G1 + G2 � V1~1 and 2 + G1 + G2 � V2 (~1 � G1). The former candidate contains the open edge
� 11 = {(G1, G2,~1) | 2 + G1 + G2,~1 = 0}, but the latter candidate contains a non-existing open edge
{(G1, G2,~1) | 2 + G1 + G2,~1 = G1}. W��LU tests all vertices satisfying ~1 < 0 to calculate V1, and
identi�es E12 = (2, 0, 2) determining V1 = 2, which provides a sound constraint. Similarly, we obtain
V2 = 0 determined by E11 . Then, we discard the constraint containing a non-existing open edge with
V2 = 0 and keep the constraint 2 + G1 + G2 � V1~1 with V1 = 2. Additionally, 2 + G1 + G2 � V1~1
provides a upper bound of ~1 due to positive V1 (in Fig. 3).

4.2.2 Innovation #2: Iterative Vertices Update. In each iteration, the vertices of the e" from the
previous iteration are required to determine the upper faces (lines 18–21). A naive way is to calculate
these vertices in each iteration, but this is costly due to the exponential complexity of converting
H-representation to V-presentation [Fukuda and Prodon 1995]. We propose to calculate the vertices
of - once (i.e., ⌧4C+4AC824B in line 1), and update them in each iteration (line 6). The update is
conducted by extending the coordinates of these vertices in 8-th output dimension by~8 = ReLU(G8).
The correctness of this is proved in Sec. 5.3.
Example. For the example in Sec. 2, the vertex E2⇤ is not transformed from the vertex of - and
is generated by the non-di�erential points with ~1 = G1 of ~1 = ReLU(G1). Speci�cally, it cannot
determine an upper face by calculating V (Formula (6)) because it always makes ~1 = 0 and ~1 = G1.

5 SOUNDNESS OF WRALU
In this section, we prove the soundness of W��LU. To ease the understanding, we �rst establish
the soundness of the main algorithm without considering the two innovations (Sec. 5.1). Based on
that, we show that introducing the two innovations retains the soundness (Sec. 5.2 and Sec. 5.3).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

Li Jiaying

75:14 Zhongkui Ma, Jiaying Li, and Guangdong Bai

5.1 Soundness of the Main Algorithm
First, we demonstrate the soundness of Algo. 1. That is, the ReLU hull must be contained by the
generated approximation.

T������ 5.1 (S�������� �� M��� A��������). The polytope e" produced by Algo. 1 is an
over-approximation to the ReLU hull" of the given input polytope - , i.e., e" ◆ " .

P����. We prove the theorem by induction. To distinguish between iterations, we use e"8 to
denote e" in Algo. 1 after the 8-th iteration, with e"0 = - . We assume that the order speci�ed by
$A34A is 1, 2, 3, · · · ,=.

For the base case, we have e"0 = "0 = - .
Given the induction hypothesis e"8 ◆ "8 , we need to prove e"8+1 ◆ "8+1 under the ReLU function

~8 = ReLU(G8) by Algo. 1.
The exact ReLU hull"8+1 is the minimal convex polytope satisfying"8+1 ◆ ("8 ,~8+1). We need

to prove that e"8+1 ◆ (e"8 ,~8+1) ◆ ("8 ,~8+1), and then the convex polytope e"8+1 ◆ "8+1.
First, (e"8 ,~8+1) ◆ ("8 ,~8+1) under ~8+1 = ReLU(G8+1), because of e"8 ◆ "8 .
Second, to prove e"8+1 ◆ (e"8 ,~8+1), let %1 and %2 be the two pieces of (e"8 ,~8+1). We provee"8+1 ◆ %1 and e"8+1 ◆ %2, and then e"8+1 ◆ (e"8 ,~8+1) = %1 [%2. To prove e"8+1 ◆ %1, we just need

to prove that all vertices of the convex polytope %1 is in e"8+1. Let E be a vertex in %1. Below we
show that E satis�es any constraint ⇠ of e"8+1 determined by Algo. 1.
The constraint⇠ is speci�ed by either (i) the lower faces, or (ii) the upper faces. For (i), E satis�es

~8 � 0 and ~8 � G8 because it is transformed by the ReLU function. Regarding (ii), E satis�es them
because W��LU keeps only supporting hyperplane candidates that do not divide the vertices (lines
20 in Algo. 1). Therefore, we conclude that E satis�es any constraint ⇠ in e"8+1 and E 2 e"8+1, and
thus %1 ✓ e"8+1. Due to symmetricity, %2 ✓ e"8+1 is proved and e"8+1 ◆ %1 [%2.

Hence, we have e"8+1 ◆ "8+1, concluding the theorem. ⇤

5.2 Correctness of Innovation #1
In this section, we demonstrate that the Innovation #1, i.e., lazy selection with the incremental
calculation of V8: , can yield an equivalent e�ect as the operations in lines 15, 16, and 21 of Algo. 1.
That is, Innovation #1 retains the soundness of the main algorithm. For conciseness, we present the
analysis on the case of dimension 8 = 1, while the general case is given at the end of this section.

5.2.1 Constraints Identification (line 20). Recall that to derive the constraints, V1 or V2 takes the
minimum value of all candidate values determined by vertices. Theorem 5.2 ensures that the
constraints derived are implied by the ReLU hull.

T������ 5.2 (E��������� �� L��� 20). For one formula G 9x + 1 9 speci�ed by - , the generated
constraint G 9x + 1 9 � V1~1 or G 9x + 1 9 � V2 (~1 � G1) is sound, when

V1 = min
⇢
G 9x0 + 1 9

~01

�
, V2 = min

⇢
G 9x0 + 1 9

~01 � G 01

�
, (8)

where (x0,~0) is a vertex of" satisfying ~01 < 0 or ~01 < G 01.

P����. Due to symmetricity, we only prove the case of V1.We prove this theorem by contradiction.
We assume that V1 does not take the minimal value, and leads to a contradiction. Let E 00 = (x00,~001)
with ~001 < 0 be the vertex making V1 minimal and E 0 = (x0,~01) makes V1 = G 9x0+1 9

~01
. Because

G 9x00+1 9

~001
< V1 =

G 9x0+1 9

~01
, we will have G 9x00 + 1 9 < V1~001 . Then E 00 does not satisfy the generated

constraints G 9x + 1 9 � V1~1. Hence, G 9x + 1 9 � V1~1 is not sound. ⇤

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:15

5.2.2 Open Edges Filtering (lines 15 and 16). Recall thatW��LU uses a further selection between
V1 and V2 to �lter out non-existing open edges through comparing the values of V1 and V2. As a
result, it only keeps one constraint from Formula (7). Theorem 5.3 establishes its soundness.

T������ 5.3 (E��������� �� L���� 15 ��� 16). Given G 9x + 1 9 that is speci�ed by a non-
redundant constraint of - , V1 and V2 in Formula (7) satisfy one of the following two cases,

(1) V1 = V2 = 0, or
(2) V1V2 = 0 and one of them is positive,

P����. We prove this by contradiction. We assume that V1 = min
n
G 9x+1 9

~1

o
< 0 and V2 =

min
n
G 9x+1 9

~1�G1

o
< 0. There must be a vertex satisfying G 9x + 1 9 = 0 in one lower face, because

G 9x + 1 9 is speci�ed by a non-redundant constraint of - . This vertex makes ~1 < 0 or ~1 � G1 < 0,
which means that V1 or V2 can be identi�ed as zero. There is a contradiction. ⇤

By Theorem 5.3, we only keep one constraint of Formula (7) with the positive V if one of V1
and V2 is non-zero, because only the non-zero V indicates an existing open edge and a tighter
constraint. Otherwise, V1 = V2 = 0, and the two constraints are identical. We then keepG 9x +1 9 � 0
into approximation. In fact, when V1 = V2 = 0, it means that %1 \ ? and %2 \ ? are both open
edges. The identi�cation of V1 and V2 indicates that there exist two vertices satisfying ~1 < 0 and
~1 < G1, respectively, and they are on the two hyperplanes in Formula (5). Then, each of these two
hyperplanes contains a vertex of" , so each of them contains an open edge.

5.2.3 Non-negativeness of V8: . The following theorem gives the non-negativeness of V: (: 2 [2]).
This indicates that the constraints generated byW��LU always give a lower bound to those ~8s
with a positive coe�cient. This contributes to a tight approximation.

T������ 5.4 (N��������������� �� V8:). The values of V1 and V2 in Formula (6) that are identi�ed
by vertices of" satisfy

V1 � 0, V2 � 0 (9)

P����. Due to symmetricity,We only prove the case of V1. First, all vertices of" satisfyG 9x+1 9 �
0, because such a constraint is of the H-representation of - . Second, all vertices satisfy ~8 � 0.
Therefore, the values determined by the vertices with ~8 > 0 in Formula (6) are positive. ⇤

General Cases. To handle general cases, for eachG 9x+1 9 speci�ed by the constraints of- ,W��LU
adds ~8 or ~8 � G8 items with V81 or V82 in each iteration based on the general form in Theorem 3.5.
It determines the values of V81 and V82 based on the following two parametric functions,

G 9x +1 9 �
8�1’
⌘=0

[V⌘1~⌘ + V⌘2 (~⌘ �G⌘)] = V81~8 , G 9x +1 9 �
8�1’
⌘=0

[V⌘1~⌘ + V⌘2 (~⌘ �G⌘)] = V82 (~8 �G8),

where we assume V01~0 + V02 (~0 � G0) = 0 for notational convenience. Generally, we have the value
of V81 and V82 as follows,

V81 = min

(
G 9x0 + 1 9 �

Õ8�1
⌘=0 [V⌘1~0⌘ + V⌘2 (~0⌘ � G 0⌘)]

~08

)
, V82 = min

(
G 9x0 + 1 9 �

Õ8�1
⌘=0 [V⌘1~0⌘ + V⌘2 (~0⌘ � G 0⌘)]

~08 � G 08

)
. (10)

They are calculated in the 8-th iteration in Algo 1.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:16 Zhongkui Ma, Jiaying Li, and Guangdong Bai

5.3 Correctness of Innovation #2
Recall that due to the expensiveness of the conversion from the H-representation of a polytope
to its V-representation (i.e., ⌧4C+4AC824B in Algo. 1) for getting its vertices (also discussed in
Sec. 6.2.2), Innovation #2 proposes an incremental manner to determine the values of V8:s by
vertices. Theorem 5.5 guarantees the soundness of W��LU with Innovation #2.

T������ 5.5 (V8:� I������������� ������� V�������). Using Formula (10), V8: s : 2 [2] can be
identi�ed by the vertices transformed from vertices of - to derive a sound constraint.

P����. Due to symmetricity, we only discuss the case of determining the value of V81, and V82
has a similar proof. We need to prove that only the vertices of (1) in Theorem 3.4 is necessary. The
origin of (3) cannot determine the value of V81 as the origin makes the denominator zero. Therefore,
we only need to discuss the cases of the type (2).

First, the vertices with ~8 = 0 cannot determine V81.
Next, if a vertex E satis�es ~8 < 0 and it is not of type (1), we will prove that another vertex E 0 of

type (1) determines the same or a smaller value of V81.
If V81 is zero, then the numerator of Formula (10) is zero. There exists a vertex E 0 also on the

hyperplane speci�ed by the numerator, reaching the same value of zero.
If V81 is not zero, then consider that the projection of E is on the intersection of one axis and an

(= � 1)-face (edge in high-dimensional space) of - by Theorem. 3.4. Because E is on one axis, it
makes G⌘ = ~⌘ = 0 for one dimension ⌘ (1 ⌘ 8 � 1). As there is another vertex E 0 with G⌘ = 0
on the same (= � 1)-face as E and E 0 does not necessarily have ~⌘ = 0 but ~⌘ 0, E 0 makes V take
a value that is not greater than that determined by E due to the non-negative coe�cient of ~⌘
(Theorem 5.4). This is a contradiction to that E gets the smallest V81.

Hence, V8:s can be identi�ed by the vertices transformed from vertices of - . ⇤

5.4 Optimality
Incompleteness. We remark that the approximation of W��LU leads to an over-approximation of
the exact ReLU hull. While we give experimental evaluation in Sec. 6.2.2, in this section we present
such an example and use it to analyze the root cause that W��LU cannot guarantee completeness.

Consider the input polytope - de�ned as a triangle - = {1 + G1 � 0, 1 + G2 � 0, 2� G1 � G2 � 0}.
Upon processing the ~1 coordinate, we obtain e"1 = {2 � G1 � G2 � 0, 1 + G1 � 4

3~1 � 0, 1 + G2 �
0, ~1 � 0, �G1 +~1 � 0}. Next, the convex approximation e"1,2 is calculated as e"1,2 = {2�G1 �G2 �
0, 1+G1� 4

3~1 � 0, 1+G2� 4
3~2 � 0, ~1 � 0, ~2 � 0, �G1+~1 � 0, �G2+~2 � 0}. Compared to e"1,2, the

ReLU hull contains two additional constraints, 2�G1+2G2+~1�3~2 � 0 and 2+2G1�G2�3~1+~2 � 0.
To explain the reason, we consider the constraint 2� G1 + 2G2 +~1 � 3~2 � 0 and it is speci�ed by

one upper face. This constraint is equal to another form of 2� G1 � G2 � �~1 + 3(~2 � G2). However,
2�G1 �G2 � �~1 is not a constraint of e"1. Therefore, this constraint cannot be obtained byW��LU
when using e"1 to extend to coordinate ~2. Moreover, if we calculate coordinate ~2 �rstly, the same
result e"2 = e"1 still does not contain this constraint.
To obtain these constraints that have not been included, we take the �rst one as an example

and consider another form of 2 � G1 � G2 � �~1 + 3(~2 � G2). It is consistent with the general form
in Theorem 3.5, but with a negative coe�cient of ~1. Note that W��LU identi�es non-negative
coe�cients (proved in Theorem 5.4). In fact, this constraint is not determined by one 3d face and
a point, but one 2d face, {2 � G1 � G2 = 0, ~1 = 0, ~2 � G2 = 0} \"1, and two vertices, (0, 2, 0, 2)
introduced by - , and (�1, 3, 0, 3) transformed from - . We only consider a special type of constraint
that is determined by one (= + 8 � 2)-face and one vertex transformed from vertices of - , and due
to this, W��LU is an approximate method.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:17

Tightness. Despite its incompleteness,W��LU can provide a tight approximation. First,W��LU
keeps the constraints derived by the exact lower faces. Next, the constructed upper-face constraints
are determined by the edges and vertices of " , i.e., they contain these exact edges and vertices.
Furthermore, all upper-face constraints have non-negative coe�cients of ~8s, so each of them
provides an upper bound to each ~8 by Formula (4). W��LU obtains the exact convex hulls of
dimensions up to three, same as in SBLM+PDDM [Müller et al. 2022], because it constructs new
faces only by pairing a vertex and one edge (=-face in high dimension).

6 EVALUATION
Wehave developedW��LU as a tool, and evaluated its performance on ReLU hull approximation (i.e.,
an intrinsic study) and ReLU-based neural network veri�cation (i.e., an extrinsic study). In this
section, we detail our implementation, experiments and results.

6.1 Implementation
W��LU is implemented in Python. It imports pycddlib [pyc 2023; Fukuda 2003] to convert the
H-representation of a polytope to its V-representation (i.e., GetVertices in line 1 of Algo. 1) by the
double description algorithm [Fukuda and Prodon 1995], and Gurobi [Gurobi Optimization, LLC
2023] to solve linear programming problems.

We also integrated W��LU into PRIMA, the state-of-the-art multi-neuron NN veri�er based on
the ReLU hull approximation, to explore its capability in verifying ReLU NNs. Considering that
the output coordinate order may a�ect the precision of our method, we have instantiated two
special orders, a by-default order which is the same as the PRIMA and the other being its reverse.
In the remaining of this section, we useW��LU,W��LUX to denote our tool equipped with the
default order and both orders, respectively, and we further use PRIMA+W��LU, PRIMA+W��LUX
to denote our integration with PRIMA. All reported experiments are conducted on a workstation
equipped with one AMD EPYC 7702P 64-core 2.00GHz CPU with 100G of main memory.

6.2 An Intrinsic Study: ReLU Hull Approximation
We �rst evaluate the performance of bothW��LU andW��LUX, on four metrics including precision,
e�ciency, constraints complexity, and scalability.

6.2.1 Experimental Se�ings. Our experimental settings are summarized as follows.
Baseline. We compare W��LU and W��LUX with three methods, including two approximate
methods, (1) the triangle relaxation method used in [Ehlers 2017] and (2) the SBLM+PDDM method
used in PRIMA [Müller et al. 2022], and (3) one exact method used in [Singh et al. 2019a].
Evaluation metrics. The input for all methods above is a bounded polytope in H-representation,
and the output is a convex polytope in H-representation over-approximating the ReLU hull. The
performance is broken down into the following metrics, (1) precision by the volume of the resulting
polytope, (2) e�ciency by the calculation time, (3) constraints complexity by the number of generated
constraints regarding the approximation, and (4) scalability by the capability to handle high
dimensions.
Input polytope generation. We �rst prepare input polytopes for these methods. An input polytope
sample is randomly generated through constructing its constraints. We employ an =-dimensional
input polytope with 3=/4= random constraints (3= � 1 constraints in the current framework of
PRIMA to construct multi-neuron constraints) for generating the samples. A constraint ax + 1 � 0
is determined by sampling coe�cients, i.e. a and 1. We sample each element of the vector a
from a uniform distribution over [�1, 1], and the scalar 1 from a uniform distribution over (0, 1],
ensuring that the input polytope contains the origin as an inner point without leading to trivial

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

Li Jiaying

75:18 Zhongkui Ma, Jiaying Li, and Guangdong Bai

Table 1. Performance of exact/approximate algorithms for ReLU hull

Input
Dim.

Exact Method Triangle Relax. SBLM+PDDM W��LU W��LUX

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
Relative Volume of Resulting Polytope (3= input constraints)

2 0.002668 0.001668 0.009028 0.004622 0.006340 0.006379 0.003515 0.002332 0.003129 0.001920
3 0.000074 0.000047 0.001131 0.000410 0.000306 0.000178 0.000152 0.000099 0.000113 0.000066
4 0.000002 0.000001 0.000152 0.000067 0.000012 0.000007 0.000008 0.000006 0.000005 0.000004

Relative Volume of Resulting Polytope (4= input constraints)
2 0.002162 0.001620 0.008155 0.004872 0.005141 0.004360 0.002828 0.001905 0.002620 0.001747
3 0.000075 0.000035 0.001139 0.000355 0.000279 0.000121 0.000156 0.000078 0.000118 0.000058
4 0.000001 0.000001 0.000149 0.000082 0.000010 0.000007 0.000007 0.000005 0.000003 0.000002

Runtime(s) (3= input constraints)
2 0.001390 0.000225 0.000035 0.000004 0.000158 0.000012 0.000208 0.000012 0.000320 0.000012
3 0.381382 0.212652 0.000035 0.000004 0.001095 0.000081 0.000364 0.000032 0.000531 0.000036
4 596.165636 458.522783 0.000033 0.000005 0.020614 0.003001 0.000762 0.000130 0.001008 0.000142

Runtime(B) (4= input constraints)
2 0.001658 0.000377 0.000036 0.000009 0.000167 0.000032 0.000348 0.001635 0.000534 0.000032
3 0.314481 0.155117 0.000033 0.000005 0.001148 0.000069 0.000548 0.000043 0.000731 0.000045
4 627.042926 408.959439 0.000034 0.000006 0.024954 0.003071 0.001996 0.000301 0.002354 0.000329

Output Constraints Number (3= input constraints)
2 12.50 2.13 6.00 0.00 12.30 1.04 16.00 0.00 28.00 0.00
3 393.50 145.33 9.00 0.00 52.80 6.29 39.00 0.00 72.00 0.00
4 38034.50 19770.21 12.00 0.00 281.80 48.25 80.00 0.00 152.00 0.00

Output Constraints Number (4= input constraints)
2 13.20 2.91 6.00 0.00 12.67 0.94 24.00 0.00 44.00 0.00
3 347.30 126.30 9.00 0.00 52.27 4.34 93.00 0.00 180.00 0.00
4 38717.27 16289.49 12.00 0.00 301.37 54.31 272.00 0.00 536.00 0.00

cases. An additional interval boundary [�5, 5], which aligns with most cases in real-world NNs,
is set for all coordinates to ensure that the input polytope is bounded (see De�nition 2.2). Note
that SBLM+PDDM only supports the high-dimensional octahedrons as inputs [Müller et al. 2022].
Therefore, a prepossessing to obtain an octahedral over-approximation is needed for SBLM+PDDM
(not counted into the runtime measurement).

6.2.2 Experimental Results and Analysis. Table 1 lists the performance of all methods on three
metrics, i.e., precision, e�ciency and constraints complexity, under an input dimension of 2–4.
We present the mean and standard deviation for each metric, where the mean value indicates
the overall performance and the standard deviation measures the variability of results. A smaller
standard deviationmeans a stable performance on random samples. The scalability of our methods is
presented in Fig. 4. It is measured by the time consumption in handling high-dimensional polytopes
up to an input dimension of 8.
Precision. Given that all these approximate methods are to over-approximate the exact ReLU hull,
the generated approximations by all methods have a greater volume than that of the hull generated
by the exact method. A tight over-approximation has a less volume and is more closed to that of the
exact ReLU hull. Since computing the exact volume analytically is hard, we use random sampling
to estimate the volumes of resulting polytopes. Speci�cally, random points are sampled in a box
region bounded by the bounds of variables of input polytope (~8 take the bounds of G8), and we
estimate the volume of polyhedron e" by volume(e") = #(points in e")

#(all the sampled points) .
As shown in Table 1, among all approximate methods, our two methods demonstrate signi�cant

advantages on both mean volumes and standard deviation, indicating a higher level of precision
than triangle relaxation (0.05X–0.2X) and SBLM+PDDM (0.4X–0.7X), and a stable performance.
W��LUX has lower mean volumes than W��LU by up to 0.5X improvements on precision, and
a less standard deviation thanW��LU too. This enhancement is becauseW��LUX’s two orders

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:19

with an additional reverse order generate two over-approximations, and intersecting them yields a
tighter approximation.
E�ciency. As shown in Table 1, our methods signi�cantly outperform the exact method, which
takes the longest time, by completing the task 10X–106X faster. In most cases, they outperform
SBLM+PDDM, especially for the higher dimensions, by up to 30X faster. The triangle relaxation
achieves the shortest time. This can be attributed to its single-neuron approximate method that
does not consider the dependency between multiple neurons. Its trade-o� may be weaker though,
compared with SBLM+PDDM and our methods, as it has innegligible sacri�ces on the precision.
Constraints Complexity. The constraint number of the resulting polytopes can be an indicator
of the simplicity of polytopes. A polytope with fewer constraints can be bene�cial when using
linear programming for the subsequent veri�cation. The experimental results in Table 1 show that
the exact method has the most constraints and that of triangle relaxation is the least. The triangle
relaxation has a �xed constraint number of 3=, where = is the input dimension. The constraint
number of our methods is closely dependent on the input polytopes. In particular, W��LU has
the same constraints number with the input polytopes plus constraints of ~8 � G8 and ~8 � 0, and
W��LUX has a double number because it uses two variable orders. Therefore, W��LU has< + 2=
constraints andW��LUX has 2< + 2=, where< is the constraints number of the input polytope
and 2= is the number of lower faces. Our methods reduce up to 99% for the exact method and up to
30% for SBLM+PDDM.

2 3 4 5 6 7 8

Input Dimension

10�3

10�2

10�1

100

T
im

e(
s)

WraLU (3n constraints)

WraLU (4n constraints)

WraLUX (3n constraints)

WraLUX (4n constraints)

Fig. 4. Average total runtime of W��LU and W��LUX
with di�erent input dimensions

Scalability. It is important for an approxima-
tion method to scale up on high-dimensional
inputs, considering that real-world problems
such as NN veri�cation typically handle high-
dimensional data. As shown in Fig. 4,W��LU
andW��LUX are capable of resolving higher
dimensions, by completing the approximation
task within 10s for 8d scenarios. We restrict
the input dimension to a maximum of 8, as in
typical application domains, e.g., NNs, a large
number of constraintsmay contain toomany re-
dundant constraints under most generalization
settings. In contrast, the exact method takes
10min to resolve a polytope of an input dimen-
sion of 4 (not shown in Fig. 4 due to the signif-
icant di�erence in scale), which may not be acceptable in solving real-world problems like NN
veri�cation. The current implementation of SBLM+PDDM does not support the input dimension
higher than 4 either. As the approximation of the triangle relaxation is too coarse, its scalability is
not measured here.

6.3 An Extrinsic Study: ReLU Neural Network Verification
This section evaluates the performance of our methods in verifying NNs, in particular, generating
multi-neuron constraints as the over-approximation of the ReLU hulls of NNs. We integrateW��LU
and W��LUX into PRIMA [Müller et al. 2022], the state-of-the-art multi-neuron NN veri�er,
denoted by PRIMA+W��LU and PRIMA+W��LUX, respectively. We �rst evaluate their overall
performance on verifying NNs, and then analyze the contribution of our methods to the e�ciency
of over-approximating ReLU hull and solving linear programming problems.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:20 Zhongkui Ma, Jiaying Li, and Guangdong Bai

Table 2. ReLU neural networks architectures used in evaluation

MNIST Network (ERAN) #Neurons #Hidden Layers CIFAR10 Network (ERAN) #Neurons #Hidden Layers
FCTiny 110 2 FCTiny 410 4
FCSmall 510 5 FCSmall 610 4
FCBig 1610 8 FCBig 1810 9

ConvSmall 3604 3 ConvSmall 4852 3
ConvBiga 48064 6 ConvBiga 62464 6

MNIST Network (Ours) #Neurons #Hidden Layers CIFAR10 Network (Ours) #Neurons #Hidden Layers
FCWide1 2058 2 FCWide1 2058 2
FCWide2 4106 4 FCWide2 4106 4
ConvBig2 48064 6 ConvBig2 62464 6

FMNIST Network (Ours) #Neurons #Hidden Layers EMNIST Network (Ours) #Neurons #Hidden Layers
FCWide1 2058 2 FCWide1 2058 2
FCWide2 4106 4 FCWide2 4106 4
ConvBig2a 48064 6 ConvBig2a 48080 6

a Trained by Di�AI [Mirman et al. 2018].

6.3.1 Experimental Se�ings. In this section, we outline the baseline, evaluation metrics, and
benchmarks. Following PRIMA, we adopt the neuron grouping strategy for approximating a
high-dimensional ReLU hull, and also utilize DeepPoly (the CPU version) to obtain input poly-
topes [Müller et al. 2022]. We also tackle numerical issues that occur when a massive number of
�oating-point numbers are involved in the computation. All experiments are conducted on the
same device as our intrinsic study.
Baseline. We compare PRIMA+W��LU and PRIMA+W��LUX with both types of approximate
methods. For single-neuron methods, we select four bound propagation approaches, including
DeepPoly [Singh et al. 2019b], DeepZ [Singh et al. 2018], CROWN and U-CROWN (with default
settings) [Zhang et al. 2018], and triangle relaxation [Ehlers 2017]. For multi-neuron methods, we
compare our methods with PRIMA [Müller et al. 2022]. We note that another multi-neuron veri�er
OptC2V [Tjandraatmadja et al. 2020] is not compared with, as PRIMA paper reports that PRIMA
outperforms it.
Evaluation metrics. We evaluate the performance of all these methods on verifying local ro-
bustness with a speci�ed ;1 perturbation. An n of perturbation radius is speci�ed for each of the
networks. The number of veri�ed samples in the �rst 100 correctly classi�ed samples and total
runtime are two metrics to measure the overall performance. To further evaluate the contribution
to the e�ciency of our methods, we also measure the constraint number, and the total runtime of
calculating ReLU hulls and solving linear programming problems.
Benchmarks. We conduct experiments on diverse network architectures, as outlined in Table 2.
First, 10 representative benchmarks are taken from the ERAN project [era 2022], including 6 fully-
connected and 4 convolutional ReLU NNs, ranging from 110 to 62,464 neurons. They are trained on
the MNIST [Deng 2012] or CIFAR10 [Krizhevsky et al. 2009]. Second, to present the performance
for large-scale network architectures, 8 fully-connected and 4 convolutional networks trained on
MNIST [Deng 2012], CIFAR10 [Krizhevsky et al. 2009], FMNIST (Fashion-MNIST) [Xiao et al. 2017]
and EMNIST [Cohen et al. 2017] (classi�cation task of recognizing 26 letters) are used.
Neuron Grouping Strategy. While W��LU and W��LUX have stronger scalability in handling
high dimensions, the exponential complexity, and numerous constraints make the computation
impractical for all neurons in a layer. Therefore, we adopt the neuron grouping strategy introduced
by PRIMA [Müller et al. 2022]. It combines neurons within the same layer into smaller groups,
forming a cover for the layer. The constraints of all groups are then combined to approximate the
entire layer. Three hyperparameters, namely =B , : , and B , are utilized to control the grouping [Müller
et al. 2022; Singh et al. 2019a], where =B denotes the size of each partition, : determines the input

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:21

Table 3. Verifiable samples number and total runtime on MNIST-FCTiny under di�erent grouping se�ings

=B : B #Group PRIMA PRIMA+W��LU PRIMA+W��LUX
#Veri. Time(s) #Veri. Time(s) #Veri. Time(s)

- 1a - - 44 20.67 - - - -
20 3 1 6770 56 111.85 58 70.19 58 69.45
20 3 2 149527 62 823.52 61 609.53 62 838.62
20 4 1 3334 58 181.51 60 90.29 61 123.79
20 4 2 25678 63 769.24 64 460.17 65 650.80
20 4 3 600149 56 13312.75 54 7568.22 48 8724.09
20 5 1 1652 - - 56 392.38 57 410.99
20 5 2 9152 - - 66 1938.68 68 2077.36
20 5 3 69255 - - 67 14754.99 66 15209.94
100 3 1 12987 56 183.66 58 103.08 58 124.98
100 3 2 461375 64 3651.10 65 2058.82 65 2620.46
100 4 1 5500 60 258.15 62 145.26 63 169.91
100 4 2 92298 65 3640.42 66 1790.98 66 1908.12
100 5 1 2768 - - 58 628.18 60 694.55
100 5 2 31415 - - 71 7067.30 66 7675.84
100 5 3 494843 - - 49 115974.83 48 119965.97
a This setting is equivalent to triangle relaxation.

dimension of each neuron group within each partition, and B represents the maximum overlapping
size between any two groups.

We use MNIST-FCTiny under di�erent grouping settings to determine suitable hyperparameters
for our benchmarking. As shown in Table 3, increasing the number of groups leads to more veri�ed
samples (5–10) but sacri�ces e�ciency. Our methods support higher dimensions and have the best
of 71 veri�ed samples than 65 of PRIMA, and also have a signi�cant advantage in runtime (1.5X–2X
faster than PRIMA). The veri�cation with the setting of (=B = 20,: = 3, B = 1) has the shortest
runtime, and (=B = 100,: = 4, B = 1) leads to more veri�ed samples within a relatively shorter
runtime compared to other settings. Therefore, we select two typical scenarios, (=B = 20,: = 3)
and (=B = 100,: = 4), both with B = 1, for the following evaluation.
Mitigation of Numerical Issues. The validity of linear programming-based veri�cation is some-
times compromised due to infeasible regions resulting from numerical issues in handling �oating-
point numbers, which may mis-indicate the absence of solutions. They occur often when dealing
with large networks and numerous neuron groups that involve hundreds of thousands of con-
straints. To mitigate them, we enforce the following settings for all methods. On the ReLU hull
approximation:
1) When the exceptions reported by pycddlib are caught, W��LU redoes the computation in

fraction number type.
2) Because the input polytope has de�ned constraints, the number of vertices should be stable. If

W��LU detects abnormal numbers of vertices, it redoes the computation in fraction number type.
3) We utilize PRIMA’s hyperparameter named cuto�, to exclude neurons with too small bounds

from ReLU hull calculations. Speci�cally, if the bounds (lower bound ; and upper bound D) of a
neuron satisfy |;D | < cuto�, then this neuron is excluded.
On the linear programming problem solving, we employ a more stringent numerical focus in

Gurobi to reduce the occurrence of possible numerical issues.

6.3.2 Performance on ERAN Benchmarks. This section evaluates the performance of all methods
on the ERAN benchmarks.
Overall Performance. Table 4 presents the performance of those approaches using single-neuron
constraints. DeepPoly achieves an obviously superior performance on the number of veri�ed
samples compared to other approaches. Therefore, we further choose DeepPoly to provide the
input polytopes in H-representation for calculating ReLU hull approximations.
Table 5 compares the performance of our methods and PRIMA. Between the two di�erent

grouping strategies, the precision under (=B = 100,: = 4) is mostly better than (=B = 20,: = 3)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:22 Zhongkui Ma, Jiaying Li, and Guangdong Bai

Table 4. Verifiable samples number and total runtime of di�erent methods using single-neuron constraints
(ERAN benchmarks)

Dataset Network n CROWNa U-CROWN DeepZ DeepPoly
#Veri. Time(s) #Veri. Time(s) #Veri. Time(s) #Veri. Time(s)

MNIST
FCTiny 0.03 3 3.64 4 70.4 38 35.6 44 4.91
FCSmall 0.019 4 7.04 6 243.39 35 70.03 53 18.97
FCBig 0.012 8 11.94 9 709.24 29 351.97 53 85.07

ConvSmall 0.1 8 7.18 12 936.68 35 52.41 45 39.26
ConvBig 0.305 14 496.79 -b -b 8 11386.04 49 1797.22

CIFAR10
FCTiny 0.001 45 6.71 46 396.97 41 336.12 45 50.88
FCSmall 0.0007 50 10.53 62 619.46 45 418.05 51 91.56
FCBig 0.0008 53 18.19 56 1769.27 37 1469.24 53 393.57

ConvSmall 0.004 49 9.27 51 1721.29 36 197.27 49 94.38
ConvBig 0.007 47 563.38 -b -b 45 10545.14 48 4430.09

a The discrepancy in the results of CROWN and DeepPoly is mainly due to di�erences in their
by-default settings. DeepPoly takes the last ReLU layer into consideration and also clips the
input perturbed intervals to [0, 1], leading to tight input intervals in some cases.

b A single sample timeout lasts for one hour.

Table 5. Verifiable samples number and total runtime of di�erent methods using multi-neuron constraints
(ERAN benchmarks)

Dataset Network n PRIMA PRIMA+W��LU PRIMA+W��LUX
(=B = 20, : = 3) (=B = 100, : = 4) (=B = 20, : = 3) (=B = 100, : = 4) (=B = 20, : = 3) (=B = 100, : = 4)

MNIST
FCTiny 0.03 44+12(111.85s)a 44+16(258.15s) 44+14(70.19s) 44+18(145.26s) 44+14(69.45s) 44+19(169.91s)
FCSmall 0.019 53+7(510.56s) 53+8(2649.36s) 53+7(465.81s) 53+10(2149.3s) 53+10(534.80s) 53+10(2830.25s)
FCBig 0.012 53+5(1799.22s) 53+6(13587.90s) 53+5(1337.65s) 53+6(11086.70s) 53+5(1711.46s) 53+6(12552.22s)

ConvSmall 0.1 45+18(388.52s) 45+20(1072.8s) 45+18(375.34s) 45+21(1055.21s) 45+19(429.95s) 45+23(1491.31s)
ConvBigb 0.305 49+6(4254.30s) 46+7(4380.95s) 46+5(3575.15s) 45+1(3779.91s) 49+4(3274.40s) 49+0(3200.66s)

CIFAR10
FCTiny 0.001 45+4(411.50s) 45+4(528.23s) 45+4(305.33s) 45+4(402.28s) 45+5(318.04s) 45+5(423.02s)
FCSmall 0.0007 51+14(579.29s) 51+14(791.62s) 51+13(433.64s) 51+13(603.78s) 51+14(461.21s) 51+14(657.24s)
FCBig 0.0008 53+5(3531.99s) 53+6(15404.19s) 53+4(3183.01s) 53+9(13176.7s) 53+4(3388.72s) 53+9(13920.71s)

ConvSmall 0.004 49+8(821.59s) 49+10(2131.12s) 49+8(856.66s) 49+10(2220.91s) 49+8(947.48s) 49+11(2673.93s)
ConvBig 0.007 48+3(11029.75s) 48+3(11724.91s) 48+3(9865.48s) 48+3(9738.36s) 48+3(7990.02s) 48+3(8279.24s)

a < + = stands for = more networks are veri�ed besides< veri�ed by DeepPoly. Numbers in brackets refer to the total runtime.
Numbers in bold refer to those cases where our methods outperform PRIMA. The ns used are the same in Table 4.

b Results include those a�ected by numerical issues (as unsuccessfully veri�ed samples).

with more up to 4 veri�ed samples for PRIMA and up to 5 for our methods. Between fully-connected
and convolutional networks, our methods has an advantage on fully-connected networks, because
the computation of ReLU hulls takes a smaller proportion for the structures of convolutional
networks. PRIMA+W��LUX has a slightly better precision than PRIMA+W��LU (up to 2 more
samples) but sacri�ces e�ciency. Overall, our methods achieve a competitive number of veri�ed
samples (up to 4 more) and shorter runtime (up to 1.2X faster), demonstrating higher precision and
e�ciency in most cases.
Performance on ReLU hull approximation and linear programming problem solving.
We further analyze the performance of two key components of the veri�cation, i.e., ReLU hull
approximation and linear programming problem solving, to reveal the contribution to e�ciency
from W��LU and W��LUX. As shown in Table 6, our methods have fewer constraints (up to 50%)
and less computation time (up to 50%) on both ReLU hull approximation and linear programming
solving in most cases. We highlight that the constraint amount reduction by W��LU indeed leads
to the runtime reduction in linear programming solving.

6.3.3 Performance on Complex Benchmarks. To further explore the e�ciency contribution of
W��LU and W��LUX, we conduct performance comparisons with PRIMA, using the benchmarks
that are large-scale networks with more datasets. The purpose of using complex benchmarks

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:23

Table 6. Constraints number and total runtime of ReLU hull approximation and linear programming problem
solving (ERAN Benchmarks)

ReLU Hull Approximation

Dataset Network PRIMA PRIMA+W��LU PRIMA+W��LUX
(=B = 20, : = 3) (=B = 100, : = 4) (=B = 20, : = 3) (=B = 100, : = 4) (=B = 20, : = 3) (=B = 100, : = 4)

MNIST
FCTiny 322726(49.96s) 1073743(113.74s)a 175783(30.65s) 439926(61.09s) 351566(31.30s) 879852(73.08s)
FCSmall 1454266(179.63s) 12753175(473.79s) 746894(160.95s) 4631040(305.76s) 1493788(174.22s) 9262080(334.72s)
FCBig 3617811(321.93s) 40312622(1435.33s) 1878972(179.06s) 15366876(674.98s) 3757944(229.24s) 30733752(792.06s)

ConvSmall 556314(95.72s) 3168860(132.83s) 339590(87.61s) 1623120(93.62s) 679180(101.80s) 3246240(118.47s)
ConvBig 316714(172.70s) 922528(220.99s) 296112(136.59s) 1417310(180.50s) 592224(137.36s) 2834620(185.41s)

CIFAR10
FCTiny 224466(144.20s) 517579(177.29s) 125130(109.92s) 222995(120.82s) 250260(113.26s) 445990(120.34s)
FCSmall 277527(213.01s) 708092(250.32s) 153242(152.93s) 291466(180.16s) 306484(160.28s) 582932(176.35s)
FCBig 2056807(378.40s) 16985398(948.79s) 1123394(278.46s) 6954116(466.67s) 2246788(295.91s) 13908232(525.06s)

ConvSmall 982907(115.04s) 5931802(260.55s) 753304(104.28s) 5403332(153.34s) 1506608(102.94s) 10806664(171.06s)
ConvBig 65986(109.64s) 188261(116.60s) 35238(83.64s) 66956(85.93s) 70476(84.4s) 133912(74.78s)

Linear Programming Problem Solving

Datasets Networks PRIMA PRIMA+W��LU PRIMA+W��LUX
(=B = 20, : = 3) (=B = 100, : = 4) (=B = 20, : = 3) (=B = 100, : = 4) (=B = 20, : = 3) (=B = 100, : = 4)

MNIST
FCTiny 342180(19.92s) 1093197(58.54s) 195237(10.16s) 459380(27.74s) 371020(12.38s) 899306(38.87s)
FCSmall 1533044(129.45s) 12831953(1029.76s) 825672(119.04s) 4709818(804.63s) 1572566(147.93s) 9340858(1443.05s)
FCBig 3855021(324.92s) 40549832(3785.54s) 2116182(262.24s) 15604086(3181.13s) 3995154(412.32s) 30970962(4233.79s)

ConvSmall 1013874(77.34s) 3626420(444.01s) 797150(75.19s) 2080680(496.18s) 1136740(106.79s) 3703800(914.47s)
ConvBig 5247944(263.58s) 5853758(239.07s) 5227342(167.17s) 6348540(237.34s) 5523454(148.38s) 7765850(191.01s)

CIFAR10
FCTiny 275654(52.30s) 568767(73.64s) 176318(28.09s) 274183(44.41s) 301448(34.68s) 497178(57.68s)
FCSmall 344953(83.02s) 775518(157.32s) 220668(49.99s) 358892(95.81s) 373910(66.06s) 650358(140.07s)
FCBig 2268037(475.17s) 17196628(1928.25s) 1334624(501.78s) 7165346(1529.20s) 2458018(644.16s) 14119462(2181.44s)

ConvSmall 1531973(180.001s) 6480868(509.16s) 1302370(302.11s) 5952398(867.70s) 2055674(380.63s) 11355730(1217.82s)
ConvBig 6926252(1846.22s) 7048527(1791.34s) 6895504(1880.56s) 6927222(1655.46s) 6930742(1400.40s) 6994178(1350.97s)

a Numbers in brackets refer to the total runtime. Numbers in bold refer to those cases where our methods outperform PRIMA.

Table 7. Verifiable samples number and total runtime of di�erent methods using multi-neuron constraints
(complex benchmarks)

Dataset Network n PRIMA PRIMA+W��LU PRIMA+W��LUX
(=B = 20, : = 3) (=B = 20, : = 3) (=B = 20, : = 3)

MNIST
FCWide1 0.025 50+17(6188.12s) 50+24(5607.3s) 50+24(6053.22s)
FCWide2 0.015 30+11(44870.75s) 30+15(32644.09s) 30+16(37034.72s)
ConvBig2 0.025 43+5(119741.36s) 43+1(122674.86s) 43+0(107418.68s)

FMNIST
FCWide1 0.025 46+10(6290.07s) 46+17(6096.72s) 46+14(6293.40s)
FCWide2 0.015 50+0(24298.26s) 50+0(15744.50s) 50+3(18030.7s)
ConvBig2 0.007 49+10(68358.00s) 49+11(57990.18s) 49+10(66434.00s)

EMNIST
FCWide1 0.025 46+13(4340.34s) 46+14(2273.37s) 46+15(3354.33s)
FCWide2 0.015 46+3(7868.29s) 46+4(7957.30s) 46+4(8502.64s)
ConvBig2 0.014 52+13(59506.00s) 52+17(54365.94s) 52+0a(59769.87s)

CIFAR10
FCWide1 0.002 45+11(6885.75s) 45+11(4881.5s) 45+11(5231.68s)
FCWide2 0.0015 39+2(9046.91s) 39+2(9460.8s) 39+3(9653.2s)
ConvBig2 0.003 47+2(107499.17s) 47+6(81729.01s) 47+0a(96468.79s)

a Results include those a�ected by numerical issues (as unsuccessfully veri�ed sam-
ples).

is to assess whether our methods have a stable superiority. Here we only present data for the
(=B = 20,: = 3) setting due to the frequent numerical issues in large-scale networks.
Overall Performance. As shown in Table 7, the results on complex benchmarks reveal a noticeable
di�erence on the number of veri�ed samples (up to 7), which is more signi�cant than those on ERAN
benchmarks. Besides, our methods demonstrate reduced total runtime (up to 50%) in the veri�cation
process. Even though more veri�ed samples need to solve more linear programming problems,
for more than half of the tested networks, our methods verify more samples in less runtime. For
example, for MNIST-FCWide1 and FMNIST-FCWide1, there are 7 more veri�ed samples in about
90% runtime of PRIMA.
Performance on ReLU hull approximation and linear programming problem solving. As
shown in Table 8, our methods remain a stable superior in calculating a large number of ReLU
hulls. Compared to PRIMA, our methods achieve a stable reduction (about 50%) in the number of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:24 Zhongkui Ma, Jiaying Li, and Guangdong Bai

Table 8. Constraints number and total runtime of ReLU hull approximation and linear programming problem
solving (complex benchmarks)

ReLU Hull Approximation Linear Programming Problem Solving

Dataset Network PRIMA PRIMA+W��LU PRIMA+W��LUX PRIMA PRIMA+W��LU PRIMA+W��LUX
(=B = 20, : = 3) (=B = 20, : = 3) (=B = 20, : = 3) (=B = 20, : = 3) (=B = 20, : = 3) (=B = 20, : = 3)

MNIST
FCWide1 4895404(114.53s) 2600032(56.72s) 5200064(74.7s) 5221158(1278.3s) 2925786(1609.15s) 5525818(1828.55s)
FCWide2 9720394(317.92s) 5117022(131.45s) 10234044(219.9s) 10652748(4343.14s) 6049376(3497.6s) 11166398(5797.76s)
ConvBig2 14207024(320.27s) 7849358(222.59s) 15698716(313.99s) 20152072(6197.72s) 13794406(6320.54s) 21643764(5746.41s)

FMNIST
FCWide1 5234445(129.67s) 2808744(80.85s) 5617488(84.66s) 5569877(1139.29s) 3144176(1671.72s) 5952920(1801.62s)
FCWide2 4726163(156.34s) 2489652(77.35s) 4979304(123.71s) 5314019(2539.68s) 3077508(1836.36s) 5567160(2681.64s)
ConvBig2 4604229(207.14s) 2620082(140.2s) 5240164(215.44s) 9708645(6536.51s) 7724498(6326.47s) 10344580(7051.98s)

EMNIST
FCWide1 2006851(109.36s) 1050260(66.94s) 2100520(57.89s) 2298165(1060.67s) 1341574(594.44s) 2391834(998.29s)
FCWide2 1218990(115.57s) 641244(63.23s) 1282488(98.35s) 1758148(1469.43s) 1180402(1383.19s) 1821646(1698.12s)
ConvBig2 10587970(267.43s) 5793356(172.94s) 11566712(251.3s) 15679546(7011.14s) 10874932(9219.21s) 16658288(4838.39s)

CIFAR10
FCWide1 1104959(110.66s) 577204(56.33s) 1154408(56.09s) 1371373(2586.77s) 843618(1743.33s) 1420822(2004.83s)
FCWide2 625033(71.20s) 322786(48.60s) 645572(72.37s) 1200931(1468.96s) 898684(1256.22s) 1221470(1490.39s)
ConvBig2 5121883(254.68s) 3028896(169.7s) 6057792(261.03s) 12246587(5712.87s) 10153600(6643.28s) 13182496(5338.12s)

constraints, resulting in signi�cant runtime reduction (30%–60%). These enhancements lead to an
average time reduction of around 10%–20% when solving linear programming problems.

7 DISCUSSION ON GENERALIZATION OF WRALU
W��LU primarily focuses on ReLU due to its pivotal role in modern DNNs. Its key insight is to
formulate a convex polyhedron as the tight over-approximation of the ReLU hull by reusing the
linear pieces of the ReLU function as the lower faces and constructing upper faces that are adjacent to
the lower faces. This insight stems from the piece-wise linearity and convexity of the ReLU function,
which allowW��LU to treat its linear pieces as lower faces. Leveraging the same fundamental idea,
W��LU can be extended to handle the following types of activation functions.

Piece-wise linear functions. W��LU can readily accommodate piece-wise linear convex
functions, e.g., Leaky ReLU [Maas et al. 2013] and MaxPool [LeCun et al. 1998], by reusing their
linear pieces as lower faces and constructing new faces using the method presented in Section 4.
Symmetrically, piece-wise linear concave functions can also be handled.

Piece-wise non-linear functions. For non-linear functions, e.g., ELU [Clevert et al. 2016], no
linear piece can be reused as the faces of their convex hull in their non-linear pieces. To apply
W��LU, a linear piece-wised function has to be constructed as the upper bound or the lower bound
to the transformation of the functions, so that the upper or lower faces can be constructed by this
linear piece-wised function. For example, in ELU with G 2 [;,D], the linear piece-wise function
of ~ = G when ELU(;) G D and ~ = ; when ; G ELU(;) can serve as the lower bound.
The two pieces can be taken as the lower faces due to the convexity of this function. Another
linear piece-wise function of ~ = ELU(;)

; (G � ;) + ELU(;) (when ; G < 0) and ~ = G (when
0 G D) can be taken as the upper bound. It has a similar shape to ReLU, so W��LU’s upper
faces identi�cation (Section 4) can be used to construct the upper faces as the upper faces of the
ELU hull.
Non-piece-wise di�erentiable functions. The solution for ELU hull discussed above can be

adapted for other non-piece-wise di�erentiable functions, e.g., Tanh and Sigmoid [Goodfellow
et al. 2016]. The key is to construct piece-wise linear functions to wrap these functions, and then
W��LU’s methods can be employed to �nd upper faces and lower faces.

8 RELATEDWORK
Our work is closely related to convex hull/approximation computation and deterministic NN
veri�cation for ReLU functions. In this section, we present a review of representative studies in
these two �elds and also highlight the di�erences between our work and existing approaches.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

ReLU Hull Approximation 75:25

Table 9. Comparison of deterministic approaches for neural network verification

Approach Complete Sound ReLU Hull
Multi-neuron Exact High-dimensional

CROWN/U-CROWN [Zhang et al. 2018] # # # #
V-CROWN [Wang et al. 2021] # # #
DeepPoly [Singh et al. 2019b] # # # #
DeepZ [Singh et al. 2018] # # # #
k-relu [Singh et al. 2019a] # #
PRIMA [Müller et al. 2022] # # #
MN-BaB [Ferrari et al. 2022] # #

Ours # #

8.1 Convex Hull/Approximation Algorithms
Conventional algorithms. The convex hull problem is a classic and well-studied problem in
computational geometry, and it has been tackled by a number of studies [Avis and Fukuda 1991,
1992; Barber et al. 1993; Chand and Kapur 1970; Dantzig and Thapa 2003; Edelsbrunner 1987;
Fukuda and Prodon 1995; Jarvis 1973; Joswig 2003; Motzkin et al. 1953], typically the quickhull
algorithm [Barber et al. 1993], the gift wrapping algorithm [Chand and Kapur 1970; Jarvis 1973],
and the double description algorithm [Fukuda and Prodon 1995]. Among them, the gift-wrapping
algorithm has an idea similar to ours, which discovers additional adjacent facets by rotating a
hyperplane along the boundary.
Algorithms in NN veri�cation. A few exact or approximate convex hull algorithms have been
speci�cally applied for verifying neural networks. The existing approaches to using convex hull algo-
rithms to construct ReLU hull or its approximation involve decomposing the orthants by piece-wise
linearity property of the ReLU function to obtain the vertices of each linear piece, and then applying
the convex hull/approximation algorithm to obtain the whole convex hull/approximation [Müller
et al. 2022; Singh et al. 2019a]. The double description algorithm is used as the core calculation
method in k-relu [Singh et al. 2019a], while PRIMA [Müller et al. 2022] introduces an approximate
algorithm based on the idea of ray-shooting and incrementally calculating output coordinates.
OptC2V [Tjandraatmadja et al. 2020] utilizes submodularity and convex geometry to get the convex
approximation among all inputs and one output at the layer scale by linear programming. The
bound step in PRIMA [Müller et al. 2022] and W��LU both extend the polytope by one dimension
at a time. W��LU (in its innovation #2) removes the computation of unnecessary vertices that are
newly generated by the ReLU function when extending the dimension, while the bound step used
in PRIMA (in its SBLM) calculates each linear piece in each quadrant and its PDDM is then used to
over-approximate the convex hull of these linear pieces by one more dimension at a time.

8.2 Neural Networks Verification
Complete and incomplete veri�cation. NN veri�cation has become increasingly important in
critical domains [Meng et al. 2022]. Many veri�ers use precise methods for complete veri�cation
and they can give a de�nitive answer to whether a given property satis�es or not. They typically
utilize satisfaction modulo theory (SMT) [Ehlers 2017; Huang et al. 2017] or mixed integer linear
programming (MILP) [Anderson et al. 2019; Botoeva et al. 2020; Bunel et al. 2019, 2018; De Palma
et al. 2021; Wang et al. 2021; Xu et al. 2021] and extended simplex method [Katz et al. 2017, 2019]
to parse the piece-wise linearity of the ReLU function. Due to the NP-hardness of verifying ReLU
neural networks, these methods are often computationally expensive and thus are limited to
small-scale NNs [Ehlers 2017; Weng et al. 2018].
Another line of research turns to approximate methods which sacri�ce completeness for scala-

bility. They typically propose to relax those ReLU neurons by a linear over-approximation, such
as interval [Gowal et al. 2019], linear programming [Ehlers 2017], zonotope [Singh et al. 2018],

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

75:26 Zhongkui Ma, Jiaying Li, and Guangdong Bai

polytopes [Singh et al. 2019b; Weng et al. 2018; Zhang et al. 2018], duality [Dvijotham et al. 2018a,b;
Wong and Kolter 2018; Wong et al. 2018]. Recently, the branch-and-bound (BaB) paradigm has
been proposed to break the barrier between complete and incomplete approaches. It incorporates
incomplete approaches to accomplish a complete veri�cation by decomposing the original problem
into sub-problems [Bunel et al. 2018; Ferrari et al. 2022; Wang et al. 2021]. Our work can be naturally
compatible with BaB and accomplish complete veri�cation. Table 9 gives a comparison between
our approach and some representative approaches.
Over-approximation to ReLU function. Over-approximating ReLU functions is essential to
both complete and incomplete approaches. For single-neuron approximation, the most e�cient
approaches are based on bound propagation, like Fast-Lin [Weng et al. 2018], CROWN [Zhang et al.
2018], DeepPoly [Singh et al. 2019b], DeepZ [Singh et al. 2018], using only two linear lower and
upper bounds to achieve bound propagation, and they can be accelerated using graphics processing
units. Triangle relaxation is the tightest linear approximation for ReLU function [Ehlers 2017] but
needs solving linear programming problems. Also, some studies [Dathathri et al. 2020; Raghunathan
et al. 2018] apply the semide�nite programming to give a convex approximation to ReLU in a
quadratic function, but they have limitations in scalability and computation time.

Besides the single neuron convex approximation, k-relu [Singh et al. 2019a] gets the constraints
involving inputs and outputs of multiple neurons (3–4) as a group, and this has been applied to
other general activation functions recently [Müller et al. 2022]. OptC2V [Tjandraatmadja et al.
2020] is an approach to calculate the constraints among all inputs and one output of a layer. In our
work, we provide a technique to advance the approximate methods by e�ciently approximating
the ReLU hulls.

9 CONCLUSION
In this work, we propose a novel approach named W��LU for fast and precise over-approximation
of the ReLU hull. The key insight is to formulate a convex polyhedron that wraps the ReLU hull,
utilizing the linear pieces of the ReLU function as the lower faces and constructing upper faces
adjacent to them. By leveraging the uniqueness of the ReLU hull in sharing linear pieces with the
original ReLU function, the method e�ciently determines the forms of adjacent faces and vertices,
resulting in a tight approximation. We have implementedW��LU and evaluated its performance
in terms of precision, e�ciency, constraint complexity, and scalability for approximating ReLU
hulls. Experimental results in large-scale ReLU-based NN veri�cation showcase its high e�ciency
without compromising precision. We envision that W��LU will inspire future work to enhance the
scalability and reliability of veri�cation techniques, to advance the veri�cation of neural networks
with non-linear activation functions.

DATA AVAILABILITY STATEMENT
The source code of W��LU is available at https://github.com/UQ-Trust-Lab/WraLU.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their constructive comments. This work is partially sup-
ported by The University of Queensland (NSRSG 4018264-617225) and Australian Research Council
Discovery Projects (DP230101196, DP240103068).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

https://github.com/UQ-Trust-Lab/WraLU

ReLU Hull Approximation 75:27

REFERENCES
2022. ERAN: ETH Robustness Analyzer for Neural Networks. https://github.com/eth-sri/eran
2023. pycddlib. https://pypi.org/project/pycddlib/
Ross Anderson, Joey Huchette, Christian Tjandraatmadja, and Juan Pablo Vielma. 2019. Strong Mixed-Integer Programming

Formulations for Trained Neural Networks.. In IPCO (Lecture Notes in Computer Science, Vol. 11480). Springer, 27–42.
David Avis and Komei Fukuda. 1991. A basis enumeration algorithm for linear systems with geometric applications. Applied

Mathematics Letters 4, 5 (1991), 39–42.
David Avis and Komei Fukuda. 1992. A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and

Polyhedra. Discret. Comput. Geom. 8 (1992), 295–313.
C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. 1993. The quickhull algorithm for convex hull. Technical Report.

Technical Report GCG53, The Geometry Center, MN.
Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener. 2020. E�cient Veri�cation of

ReLU-Based Neural Networks via Dependency Analysis.. In AAAI. AAAI Press, 3291–3299.
Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. 2019. Branch and Bound

for Piecewise Linear Neural Network Veri�cation. CoRR abs/1909.06588 (2019).
Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and Pawan Kumar Mudigonda. 2018. A Uni�ed View of

Piecewise Linear Neural Network Veri�cation.. In NeurIPS. 4795–4804.
Donald R. Chand and Sham S. Kapur. 1970. An Algorithm for Convex Polytopes. J. ACM 17, 1 (1970), 78–86.
Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUs). http://arxiv.org/abs/1511.07289 arXiv:1511.07289 [cs].
G Cohen, S Afshar, J Tapson, and A van Schaik. 2017. Emnist: anextension of mnist to handwritten letters. arXiv preprint

arXiv:1702.05373 (2017).
George Bernard Dantzig and Mukund N Thapa. 2003. Linear programming: Theory and extensions. Vol. 2. Springer.
Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Uesato, Rudy Bunel, Shreya

Shankar, Jacob Steinhardt, Ian J. Goodfellow, Percy Liang, and Pushmeet Kohli. 2020. Enabling certi�cation of veri�cation-
agnostic networks via memory-e�cient semide�nite programming. CoRR abs/2010.11645 (2020).

Alessandro De Palma, Harkirat S Behl, Rudy Bunel, Philip Torr, and M Pawan Kumar. 2021. Scaling the convex barrier with
active sets. In Proceedings of the ICLR 2021 Conference. Open Review.

Li Deng. 2012. The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing
Magazine 29, 6 (2012), 141–142.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan O’Donoghue, Jonathan Uesato, and
Pushmeet Kohli. 2018a. Training veri�ed learners with learned veri�ers. arXiv preprint arXiv:1805.10265 (2018).

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet Kohli. 2018b. A Dual Approach
to Scalable Veri�cation of Deep Networks.. In UAI. AUAI Press, 550–559.

Herbert Edelsbrunner. 1987. Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science,
Vol. 10. Springer. I–XV, 1–423 pages. http://dx.doi.org/10.1007/978-3-642-61568-9

Rüdiger Ehlers. 2017. Formal Veri�cation of Piece-Wise Linear Feed-Forward Neural Networks.. In ATVA (Lecture Notes in
Computer Science, Vol. 10482). Springer, 269–286.

Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin Vechev. 2022. Complete veri�cation via multi-neuron
relaxation guided branch-and-bound. arXiv preprint arXiv:2205.00263 (2022).

Komei Fukuda. 2003. Cddlib reference manual. Report version 093a, McGill University, Montréal, Quebec, Canada (2003).
Komei Fukuda and Alain Prodon. 1995. Double Description Method Revisited.. In Combinatorics and Computer Science

(Lecture Notes in Computer Science, Vol. 1120). Springer, 91–111.
Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin T. Vechev. 2018. AI2:

Safety and Robustness Certi�cation of Neural Networks with Abstract Interpretation.. In IEEE Symposium on Security
and Privacy. IEEE Computer Society, 3–18.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.
Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja Arandjelovic,

Timothy Arthur Mann, and Pushmeet Kohli. 2019. Scalable Veri�ed Training for Provably Robust Image Classi�cation..
In ICCV. IEEE, 4841–4850.

Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https://www.gurobi.com
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Veri�cation of Deep Neural Networks.. In CAV

(1) (Lecture Notes in Computer Science, Vol. 10426). Springer, 3–29.
Ray A. Jarvis. 1973. On the Identi�cation of the Convex Hull of a Finite Set of Points in the Plane. Inf. Process. Lett. 2, 1

(1973), 18–21.
Michael Joswig. 2003. Beneath-and-Beyond Revisited. In Algebra, Geometry, and Software Systems. Springer, 1–21.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

https://github.com/eth-sri/eran
https://pypi.org/project/pycddlib/
http://arxiv.org/abs/1511.07289
http://dx.doi.org/10.1007/978-3-642-61568-9
https://www.gurobi.com

75:28 Zhongkui Ma, Jiaying Li, and Guangdong Bai

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An E�cient SMT Solver
for Verifying Deep Neural Networks.. In CAV (1) (Lecture Notes in Computer Science, Vol. 10426). Springer, 97–117.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor,
Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett. 2019. The Marabou Framework
for Veri�cation and Analysis of Deep Neural Networks.. In CAV (1) (Lecture Notes in Computer Science, Vol. 11561).
Springer, 443–452.

Alex Krizhevsky, Geo�rey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha�ner. 1998. Gradient-based learning applied to document

recognition. Proc. IEEE 86, 11 (1998), 2278–2324. https://ieeexplore.ieee.org/abstract/document/726791/ Publisher: Ieee.
Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. 2013. Recti�er nonlinearities improve neural network acoustic

models. In Proc. icml, Vol. 30. Atlanta, GA, 3.
Peter McMullen. 1970. The maximum numbers of faces of a convex polytope. Mathematika 17, 2 (1970), 179–184.
Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun Lin, and Jin Song Dong. 2022. Adversarial

robustness of deep neural networks: A survey from a formal veri�cation perspective. IEEE Transactions on Dependable
and Secure Computing (2022).

Matthew Mirman, Timon Gehr, and Martin T. Vechev. 2018. Di�erentiable Abstract Interpretation for Provably Robust
Neural Networks.. In ICML (Proceedings of Machine Learning Research, Vol. 80). PMLR, 3575–3583.

T.S. Motzkin, H. Rai�a, G. L. Thompson, and R. M. Thrall. 1953. The Double Description Method. In Contributions to the
Theory of Games II. Princeton University Press.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin T Vechev. 2022. PRIMA: general and
precise neural network certi�cation via scalable convex hull approximations. Proc. ACM Program. Lang. 6, POPL (2022).

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Semide�nite relaxations for certifying robustness to adversarial
examples.. In NeurIPS. 10900–10910.

Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reachability Analysis of Deep Neural Networks with Provable
Guarantees.. In IJCAI. ijcai.org, 2651–2659.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. 2019a. Beyond the Single Neuron Convex
Barrier for Neural Network Certi�cation.. In NeurIPS. 15072–15083.

Gagandeep Singh, Timon Gehr, MatthewMirman, Markus Püschel, and Martin T. Vechev. 2018. Fast and E�ective Robustness
Certi�cation.. In NeurIPS. 10825–10836.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019b. An abstract domain for certifying neural
networks. Proc. ACM Program. Lang. 3, POPL (2019), 41:1–41:30.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014.
Intriguing properties of neural networks.. In ICLR (Poster).

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Kishor Patel, and Juan Pablo Vielma. 2020. The
convex relaxation barrier, revisited: Tightened single-neuron relaxations for neural network veri�cation. Advances in
Neural Information Processing Systems 33 (2020), 21675–21686.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of Neural Networks with Mixed Integer
Programming.. In ICLR (Poster). OpenReview.net.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-crown: E�cient
bound propagation with per-neuron split constraints for neural network robustness veri�cation. Advances in Neural
Information Processing Systems 34 (2021), 29909–29921.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning, and Inderjit S.
Dhillon. 2018. Towards Fast Computation of Certi�ed Robustness for ReLU Networks.. In ICML (Proceedings of Machine
Learning Research, Vol. 80). PMLR, 5273–5282.

Eric Wong and J. Zico Kolter. 2018. Provable Defenses against Adversarial Examples via the Convex Outer Adversarial
Polytope.. In ICML (Proceedings of Machine Learning Research, Vol. 80). PMLR, 5283–5292.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. 2018. Scaling provable adversarial defenses. Advances in
Neural Information Processing Systems 31 (2018).

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747 (2017).

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. 2021. Fast and Complete:
Enabling Complete Neural Network Veri�cation with Rapid and Massively Parallel Incomplete Veri�ers. In International
Conference on Learning Representation (ICLR).

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2022. General cutting
planes for bound-propagation-based neural network veri�cation. arXiv preprint arXiv:2208.05740 (2022).

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. E�cient Neural Network Robustness
Certi�cation with General Activation Functions.. In NeurIPS. 4944–4953.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 75. Publication date: January 2024.

https://ieeexplore.ieee.org/abstract/document/726791/

	Abstract
	1 Introduction
	2 Problem Definition and Approach Overview
	2.1 Preliminaries of Convex Polytopes
	2.2 ReLU Hull and a Running Example
	2.3 Approach Illustration with the Running Example

	3 Formal Foundation of Our Approach
	3.1 Linear Pieces of (X, Y)
	3.2 Constraints Specified by Lower Faces of ReLU Hull
	3.3 Vertices of ReLU Hull
	3.4 Constraints Specified by Upper Faces of ReLU Hull

	4 WraLU: a ReLU Hull Over-Approximation Approach
	4.1 The Main Algorithm
	4.2 Two Innovations for Efficiency

	5 Soundness of WraLU
	5.1 Soundness of the Main Algorithm
	5.2 Correctness of Innovation #1
	5.3 Correctness of Innovation #2
	5.4 Optimality

	6 Evaluation
	6.1 Implementation
	6.2 An Intrinsic Study: ReLU Hull Approximation
	6.3 An Extrinsic Study: ReLU Neural Network Verification

	7 Discussion on Generalization of WraLU
	8 Related Work
	8.1 Convex Hull/Approximation Algorithms
	8.2 Neural Networks Verification

	9 Conclusion
	Acknowledgments
	References

