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Verifying Smart Contracts by Learning Contract
Invariants

Bo Gao, Ling Shi, Jiaying Li, and Jun Sun

Abstract—Smart contracts are computer programs run on blockchain which allow different parties to conduct safe transactions. They
are immutable after deployment and a minor flaw may result in huge financial losses. Thus, the safety and security of smart contracts
are critical for the developers and users. Early efforts focused on verifying smart contracts at the function level. Although a few recent
approaches aim to verify smart contracts at the contract level (which is more useful), adopting them for contract analysis requires
non-trivial efforts as they often either require user-provided contract invariants as inputs or rely on limited invariant templates, which
impedes their application in practice.
In this work, we develop an approach which verifies contract-level correctness through learning contract invariants. In particular, we
develop XVerify, a formal verifier for Solidity smart contracts, with the capability of counter-example guided contract invariant learning.
XVerify has been evaluated on 87 real-world popular smart contracts against more than 12k assertions on multiple critical properties.
The experimental result shows XVerify outperforms existing smart contract verification approaches in terms of effectiveness and
efficiency.

Index Terms—Smart Contract, Verification, Contract Invariants
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1 INTRODUCTION

Smart contracts, running on blockchain platforms like
Ethereum [1], EOS [2] and Hyperledger Fabric [3], are
computer programs which allow users to define complex
protocols among distrusting parties. With the help of smart
contracts, blockchain is widely used in many different ar-
eas such as supply chain management, financial services
and data sharing [4], [5], [6]. Typically, a smart contract is
written in high-level languages, like Solidity [7], Vype [8] in
Ethereum. The high-level contracts are then compiled into
Ethereum Virtual Machine (EVM) [1] bytecode, which are
deployed to blockchain later on. Different from traditional
programs, smart contracts cannot be modified or patched
once deployed on the blockchain. That is called immutabil-
ity, one of key features of blockchain. At the same time,
smart contracts usually manage a significant amount of
financial assets, such as cryptocurrencies and tokens. Any
defect makes the contract forever vulnerable and may lead
to great financial losses. For instance, the notorious Parity
incidents [9], [10] caused a loss of more than 150k Ether
(∼ 30M USD) during the first attack, and freezed about
500k Ether (∼ 150M USD) during the second attack. Note
that Ether is the native cryptocurrency of Ethereum. Thus,
formal verification of smart contracts is highly desirable.

Several tools have been developed for the verifica-
tion of smart contracts in recent years. Securify [11] and
Zeus [12] encode Solidity contracts into existing interme-
diate languages (i.e., Datalog and LLVM) and reuse existing
verification facilities to analyze the contracts against pre-
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defined security properties. However, these tools focus on
the function-level analysis of smart contracts, which often
lead to false alarms. On the other hand, VerX [13] uses
a delayed predicate abstraction approach to verify user-
provided functional specifications by automatically infer-
ring the abstraction predicates from contract codes or atomic
properties. Such an approach is idealistic as providing a
specification can be a burden for users. solc-verify [14]
translates Solidity contracts into the Boogie language and
discharges verification conditions with SMT solvers. It also
requires users to provide different annotations for accurate
verification within the contract source codes. Solicitous [15],
the formal engine inside the official Solidity compiler, di-
rectly models the Solidity contracts with constrained Horn
clauses and leverages a generic theorem provers for fully
contract verification. Its capability is greatly dependent on
the CHC provers. VeriSmart [16] automatically discovers
transaction and loop invariants with the help of domain-
specific templates to verify smart contracts. However, they
are limited to a few simple forms, and many forms of
useful invariants are not taken into consideration, such as
x = y + z. This limitation constrains the capabilities of the
tool.

In this work, we present the design and implementation
of a formal verifier called XVerify for EVM contracts. XVer-
ify verifies unbounded contract-level correctness through
learning contract invariants based on a combination of
symbolic execution [17], lazy annotation [18] and state-of-
the-art loop invariant generation [19], [20]. Given a smart
contract with assertions (represented by opcode 0xfe in
EVM bytecode), an accurate control-flow graph (CFG) is
constructed first. Then, XVerify leverages symbolic execu-
tion [17] to generate verification conditions which form the
node invariants for each node in the CFG. The invariants
(which is true initially) are then monotonically strengthened
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1 function distribute(address[] investor) external {
2 for(uint i=0; i < investor.length; i++)
3 investor[i].transfer(10);
4 }

Fig. 1. Bytecode vulnerability

through sound inference rules. Next, XVerify aims to identify
the contract invariants and loop invariants, if there are loops
in the contracts, with the help of counter-example guided in-
variant learning. Contract invariants are properties that hold
through any function call sequences on the contract, which
are essential for the verification of contract correctness. Note
that learning contract invariants is slightly different from
learning ordinary loop invariants (for reasons such as: there
is no terminating condition). Domain-specific heuristics are
also used to facilitate the verification.

Compared with existing approaches, our approach has
the following advantages. First, our approach requires no
user-specified contract invariants. Specifying invariant is
often overwhelming for ordinary users and such a require-
ment would hinder the application of an approach. To
address this issue, our approach learns invariants automati-
cally in a property-guided manner. Second, our approach is
based on EVM bytecode which is more accurate comparing
to those based on source code. One of such examples is
shown in Figure 1, users can invoke function distribute to
pay Ether back to the investors. The input data to invoke
the function is comprised of the function selector, the offset
of the array data, the length and the content of the array.
Interested readers can refer to Solidity documentation [7]
for further details on the components of the input data like
the function selector. Early Solidity versions, before v0.5.0
as far as we know, did not have any check when arithmetic
computations involved the offset of the array data. It is
thus possible for malicious users to craft the input data to
distort the function, like transfer money to the same address.
Such compiler-related deficits are blind spots for source-
code based tools. Third, our approach is more efficient. We
adopt the idea of lazy annotation to traverse back from
the fail nodes to the root node on the control flow graph
(CFG) to get the verification conditions, which means we
concentrate on the property-related nodes only. Minimizing
the number of queries to the SMT solver saves a lot of time
and improves the efficiency.

Experiments demonstrate the effectiveness and effi-
ciency of XVerify for analyzing smart contracts. We first
conducted a comparison experiment with Solicitous [15] on
30 contracts with version v0.6. Then we further evaluated
XVerify with VeriSmart [16] on 57 solidity contracts (top30
transactions and top30 balance) whose versions are v0.5.
The result showed that XVerify can verify more contracts
and detect more vulnerabilities against assertions (including
compiler inserted assertions) within shorter analysis time
than the other two tools.

To conclude, our main contributions in this work include
the following.

• We develop a new approach for verifying smart
contracts. Our approach infers contract invariants
with the help of loop invariant learning and invariant

1 contract GRX {
2 uint buyPrice = 760;
3 function buy() payable public returns (uint amount){
4 amount = msg.value * buyPrice;
5 assert (msg.value == amount/buyPrice);
6 ...
7 return amount;
8 }
9 }

Fig. 2. Example contract adapted from real-world contract
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Fig. 3. Example CFG for GRX contract

inference techniques to accurately verify the smart
contracts.

• We implement an end-to-end tool XVerify for EVM
smart contracts and make it public on Github
(it can be found at: https://www.dropbox.com/s/
tob7fxj9yo33507/xverify.zip?dl=0 and will go to pub-
lic once the paper is accepted. We did not upload it to
Code Ocean because there are dependency libraries
which are not supported.).

• We evaluate the effectiveness and efficiency of XVer-
ify in comparison with two state-of-the-art tools,
VeriSmart [16] and Solicitous [15].

The rest of the paper is organized as follows. In Section 2, we
illustrate how XVerify works through two simple examples.
In Section 3, we present the details of our approach. In
Section 4, we discuss the evaluation results. In Section 5,
we review related works and lastly we conclude with a
discussion on future work in Section 6.

2 MOTIVATING EXAMPLES

Given a smart contract, the goal of XVerify is to verify the
correctness of the properties in form of assertions in the
presence of an unbounded arbitrary sequence of function
calls. In this section, we demonstrate the key features of
XVerify through two examples which are adapted from real-
world contracts.
Example 1. Figure 2 is a simplified version of the original
contract1, which is reported to CVE (Common Vulnera-
bilities and Exposures system) for having a “tradeTrap”
issue [21]. In this example, users can buy the GRX token
through function buy, the amount is the multiplication of
msg.value and buyPrice. The reporter claims that this

1. Contract address: 0x219218f117DC9348b358b8471c55A073E5e0dA0b
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multiplication can cause an overflow, which could lead to
a financial loss to the buyers, aka the “tradeTrap” issue.
However, we will verify this contract with XVerify to show
that it is a false report.

To verify this contract, XVerify first constructs the CFG
as shown in Figure 3 based on the EVM bytecode. In
this CFG, node n0 stands for the state after deploying
the contract to Blockchain. It is decided by the constructor
function in the contract which is only executed once. There
is no explicit constructor function in this example, but a
similar function statement exists at line 2, which initialises
the storage of buyPrice to 760. Thus, after n0, the state
becomes buyPrice = 760. Node n1 is the root node which
is the entry of the contract after it is deployed. Anyone
can call any function in the contract through this single
entry. The nodes without children represent the exits of the
contract, like n4. The node n3-a is an arithmetic node which
contains arithmetic operations (i.e., MUL) as shown by the
bytecode snippet a© beside node n3-a. XVerify generates an
overflow assertion (msg.value ∗ buyPrice ≤ 2256 − 1) for
this operation inherently, and forms a virtual fail node as
shown by node n3 fail in the figure. A virtual fail node
does not exist physically, it is only used to facilitate the
analysis. Nodes n4 and n6 are fail nodes, which contain
the instruction ASSERTFAIL (0xfe). Note that node n4 is
generated by the compiler, which checks, together with
node n3-b, whether the divisor buyPrice is 0 in the division
(amount/buyPrice) at line 5 in the contract. In snippet b
corresponding to node n3-b, the execution will jump to node
n5 if buyPrice is not 0, otherwise, it will go to node n4. Node
n6 stands for the assertion provided by the developers at
line 5, which asserts the equality between msg.value and
amount/buyPrice. Nodes n7 and n8 are terminal nodes.
The dot lines from the terminal nodes to the root node n1
form a global loop-like structure due to the fact that all
public functions can be called repeatedly. This CFG also
demonstrates the discordance on assertions between the
source code and the EVM bytecode.

Next, we try to verify all the assertions in the function
level by labelling the CFG nodes with an initial contract
invariant true at node n1. Furthermore, we only concentrate
on the nodes which are necessary for the verification of
assertions. This is inspired by the idea of lazy annotation,
which only deduces the annotation in response to search
failures [18]. Thus, we only traverse the nodes which lead to
the fail nodes to form the invariants. Take the invariant of
node n3 fail as an example, the part (msg.value < 2100)
is introduced by XVerify for accurate analysis. msg.value
stands for the amount of Ether transferred to this contract
when the function buy is invoked. We constrain it to be
smaller than 2100 as the total supply of Ether is around
280 to date. Nobody can deal more Ether than that number.
With the node invariant of (msg.value < 2100∧msg.value∗
buyPrice > 2256 − 1) for node n3 fail, we will find the
virtual fail node is reachable, which means the overflow
assertion is possibly violated. The reason is obvious since
the number of buyPrice is unknown.

Then, we invoke the contract invariant learning mod-
ule to conduct the contract level verification. The learning
module takes the global variables (e.g., buyPrice in GRX)
as features to generate data samples. As we are trying

1 contract ContribToken {
2 mapping (address => uint) balances;
3 constructor() public { balances[msg.sender] = 10**4; }
4 function transfer(address receiver, uint numTokens)

public {
5 require(numTokens <= balances[msg.sender]);
6 balances[msg.sender] = balances[msg.sender]-

numTokens;
7 balances[receiver] = balances[receiver]+numTokens;
8 assert (balances[receiver] >= numTokens);
9 }

10 }

Fig. 4. Example contract adapted from ContribToken

to find a contract invariant, only global variables (a.k.a.
storage variables) matter. We execute random sequences
of functions in the contract with the randomly generated
global variables’ valuation and label the valuations accord-
ing to the rules illustrated in Section 3.3.1. In this example,
XVerify first samples the valuation of buyPrice as 760.
Note that XVerify is designed to generate a data sample
which satisfies the precondition while starting sampling.
The precondition in this example is (buyPrice = 760).
We execute the function buy with this valuation and give
random input valuations to other variables (e.g.,msg.value)
at the same time. We label this valuation as positive as all the
assertions hold (our sampling valuation does not beyond
300), which forms the first data sample {(760,+1)}. We
also sample buyPrice with other valuations like 100. But
these data samples are thrown away as they do not satisfy
the precondition although they meet the post assertion.
Thus, a candidate invariant true is returned because there
is only one positive data sample in the sampling phase. A
counterexample is generated when we validate this candi-
date invariant. The 256-bit counterexample is 0X01f1...1,
which is labelled as negative. With this updated dataset
{(760,+1), (87817...1,−1)}, a new candidate invariant is
returned, which is (buyPrice ≤ 760). Later, this invariant
is refined to (buyPrice > 0 ∧ buyPrice ≤ 760), and it is
successfully validated this time. That means, the arithmetic
multiplication is safe, and all the assertions in the contract
are also verified simultaneously as long as a valid contract
invariant is returned. Detail explanation will be seen in
Section 3.

In contrast, the exhaustive verifier VeriSmart [16] emits
a warning for this operation and same for Solicitous [15],
which is a false alarm actually.
Example 2. The ContribToken contract shown in Figure 4 is
adapted from a real-world contract2. This contract issues
certain amount (106) of tokens to the creator by assign-
ing them in the global mapping variable balances in the
constructor at line 3. These tokens are then distributed to
other users by function transfer, which sends numTokens
from the message sender’s account to the recipient’s account
(lines 6–7) if the sender’s balance is sufficient (line 5).
Conventional tools report a false alarm for the assertion at
line 8, while XVerify verifies it correctly.

To start the analysis, we first try to verify the as-
sertion without the help of the contract invariant after
constructing the labelled CFG. Take the ADD operation at

2. Contract address: 0x966daed1348fbd894bb6c404d9cddf78a9932913
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Fig. 5. Flow chart for XVerify

line 7 as an example, the node invariant for the virtual
fail node is (balances[msg.sender] >= numTokens) ∧
(balances[receiver] + numTokens < balances[receiver]).
Obviously, it is reachable as the value for balances[receiver]
is unconstrained.

Thus, the contract invariant learning is invoked. In this
example, a new feature sum for mapping is introduced
by XVerify. This is a useful feature for capturing contract
invariants, such as an invariant which states that the sum
remains constant or the sum never overflows. For each
numeric feature x, we have (x < uint.max) as a standard
invariant candidate. At the same time, the new feature sum
has the following two properties:

sum balances =
∑
i

balances[i] (1)

summing any balances[i] does not overflow. (2)

The first property ensures the introduced feature sum
is the total of all accounts in the balances mapping. The
second property ensures the summation of any two or more
accounts should be smaller than sum. These properties
always hold as long as sum is involved in and no other
functions increase or decrease the total value of mapping
variable balances.

We then sample valuations for this new feature sum and
label it by executing all functions in the contracts. As the
upper bound for variable valuations is much smaller than
2256 while sampling, the assertions for overflow are hardly
violated. Thus, only positive data samples are collected and
a candidate invariant (true) is generated initially. This can-
didate invariant is later refined to be sum balances ≤ 104

with the help of the inherent properties of sum illustrated
in Eq. (1) and Eq. (2), which is validated to be the real
contract invariant candidate. With this contract invariant, all
the fail nodes are proved to be unreachable, and we claim
the assertions hold in this contract.

VeriSmart reports a timeout on this contract and Solici-
tous finishes the analysis with multiple false alarms.

3 OUR APPROACH

In this section, we first demonstrate the workflow of XVerify.
As shown in Figure 5, XVerify consists of three parts, i.e.,

the labelled CFG constructor, the verifier and the invariant
generator. It takes as input the EVM bytecode and constructs
a labelled CFG at the first step. The constructor will mark
the arithmetic nodes and fail nodes, and label the nodes
with the respective node invariants. This labelled CFG is
fed into the verifier later on. There are two components
at this stage, function verifier and contract verifier. Func-
tion verifier works without taking the contract invariant
into consideration and aims to verify the assertions at the
function level. If we fail to verify any of the assertions,
that means this assertion can be violated at function level,
and thus the contract verifier is invoked. At this step, the
contract verifier invokes the invariant generator to system-
atically infer a sound contract invariant for the assertions.
If an invariant is returned by the generator, the verification
succeeds. Otherwise, a counter example demonstrating the
potential vulnerability is returned to the users.

3.1 Labelled CFG Construction

A CFG is the graphical representation of control flow paths
of programs. Given the bytecode of a smart contract, it is
constructed based on the assembled EVM code. We omit
the definitions for the EVM instruction set, readers can refer
to Ethereum yellow paper [1] for further details. A smart
contract is composed of a sequence of instructions. Typically
the instructions are organized into basic blocks, i.e., a linear
sequence of instructions having one entry point (the first
instruction executed) and one exit point (the last instruction
executed) [22]. Labelled CFG is a CFG labelled with node
invariants, which is defined as follows:

Definition 1. Given a smart contract (SC), its labelled CFG
is a 4-element tuple (N, root, E, I) where N is a set of
nodes representing basic blocks of instructions and these
instructions have the same node label; root ∈ N is the
entry node; E ⊆ N ×N is a set of edges; I : N → Pred
is a mapping that associates each node with a corre-
sponding invariant. A : N → Pred is a mapping that
associates fail nodes with assertion predicates.

Constructing the CFG in practice is non-trivial. That is,
given the EVM bytecode of a smart contract, we first disas-
semble the bytecode into a sequence of EVM instructions.
To identify the edges of the CFG, we must figure out all
the targets of JUMP and JUMPI instructions. These targets
are not always available statically. Thus, we dynamically
simulate the execution by concentrating on the control flow
only. That means we simulate the stack to precisely identify
the target of JUMP and JUMPI (since all the control-flow
targets are kept in the stack as the EVM is a stack machine).
Readers are referred to [23], [24] for details on how the CFG
is constructed. We claim the constructed CFG is complete
as long as the nodes without children are terminal nodes
or fail nodes, whose last instruction is RETURN, REVERT
or ASSERTFAIL. This claim is based on the fact that all the
addresses of children nodes in EVM bytecode contracts are
certain and they are integer numbers counting from number
13.

3. https://github.com/ethereum/solidity/blob/develop/
libevmasm/Assembly.h\#L52 accessed on Aug.27, 2021
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At the same time, we mark the nodes containing opcode
ASSERTFAIL (0xfe) as fail nodes. Furthermore, we mark the
nodes containing opcodes of ADD, SUB, MUL as arithmetic
nodes (DIV is taken into consideration by Solidity compiler
as explained in Section 2), and insert a conditional check
for overflow after those opcodes for the arithmetic nodes.
If the condition is satisfied (i.e., overflow occurs), a fail
node is reached; otherwise, the control flow continues with
the normal flow. If all the fail nodes are unreachable, the
contract is safe.

3.2 Invariant Generation
We introduce the conception of node invariants based on the
symbolic semantics and further explain how the invariants
are formed at this subsection.
Definition 2 (Symbolic Semantics). Let (N, root, E, I) be

a smart contract, its (symbolic) semantics is defined as
a transition system (S, init,→s, O), where S is a set
of symbolic states, and each state s is a pair (pc, φ)
where: pc ∈ N denotes the current program counter, φ
is a constraint which consists of the symbolic path con-
straint and the symbolic values of the program variables;
init ∈ S is the initial state and each program variable
is initialized to a fresh input symbolic variable while
introduced; →s⊆ S × C × S is the transition relation
conforming to the symbolic semantic rules (shown in
Figure 6), O ∈ S is the set of final states.

Note that the symbolic values of the program variables
are also taken into consideration for the constraint φ in each
state s which is different from the conventional definition
for symbolic state. This is necessary for the verification
of intrinsically assertions inserted by us, they can only be
inferred with this symbolic values. The set C is the symbolic
commands (opcodes) which are based on the EVM instruc-
tion set. We show a few most relevant symbolic execution
rules of the opcodes in Figure 6 and refer the readers to [1]
for the full set of rules. These rules are either particular to
EVM or critical for our analysis. Note that, Fr in Figure 6 is a
function returning a free symbolic variable for any different
input. φ is updated by φ[op 7→ Fr(op)], which means a new
symbolic term is introduced if this opcode is not introduced
before, e.g., SHA3(addr) is encoded to be sha3 addr by Fr.
The variable upperbound is explained in the NBC-ops in the
following.

NBC-ops stands for Numeral Bound Constraint opcodes,
which include the opcodes in Table 1. This is where the
domain-specific constraints come into picture. We roughly
give an upper bound for these attributes. This upper bound
is 2100 in our implementation. It is a reasonable bound
for our analysis as the total issuance of Ether is around
280. Thus, the value for commands like BALANCE, CAL-
LVALUE, are impossible to exceed the upper bound. FC-ops
are opcodes those are Free of Constraints. It is worth men-
tioning that SHA3 and CALL-like opcodes also drop in this
category. We treat SHA3 as an uninterpreted function, which
holds the property that the results of same arguments are the
same. We assume that any result is possible by CALL-like
opcodes. SLOAD and MLOAD are similar, different symbols
are used to represent storage and memory. The execution
rule for JUMPI is split into two, i.e., JUMPI-1 and JUMPI-2.

TABLE 1
Rules for opcodes

Rule Opcodes
NBC-ops BALANCE, CALLVALUE, CALLDATASIZE,

GASPRICE, EXTCODESIZE,
RETURNDATASIZE, TIMESTAMP,
NUMBER, DIFFICULTY, GASLIMIT,
SELFBALANCE, MSIZE, GAS

FC-ops SHA3, ADDRESS, ORIGIN, CALLER,
CALLDATALOAD, EXTCODEHASH,
BLOCKHASH, COINBASE, CREATE,
CREATE2, STATICCALL, CALL,
CALLCODE, DELEGATECALL, SLOAD,
MLOAD, CALLDATACOPY, EXTCODECOPY,
RETURNDATACOPY

JUMPI-1/JUMPI-2 JUMPI
Simp-ops SUB, DIV, SDIV, MOD, SMOD, EXP,

SIGNEXTEND, LT, GT, SLT, SGT,
EQ, AND, OR, XOR, BYTE, SHL, SHR,
SAR, NOT, ISZERO, SELFDESTRUCT,
REVERT, RETURN, STOP, POP,
ADDMOD, MULMOD, MSTORE, MSTORE8,
SSTORE, DUP1, ..., DUP16, SWAP1,
..., SWAP16, JUMP

JUMPI-1 updates φ to be (φ∧¬cond) and updates pc to pc+1.
JUMPI-2 updates φ to be (φ ∧ cond) and pc to T . T is the
destination instruction’s pc if the cond is satisfied. We omit
the rules for Simp-ops in Figure 6. Simp-ops encode their
operands into 256 bit-vector symbolic values directly as long
as there is a symbolic value in the operands. Otherwise, they
are concretely executed.

With the symbolic execution rules, we can form the sym-
bolic trace. A (symbolic) trace tr is a sequence of symbolic
states in the form of tr = 〈s0, s1, . . . , sk+1〉, where s0 = init
and si →s si+1 for all 0 ≤ i ≤ k. We write last(tr) to
denote the last state of the trace, i.e., last(tr) = sk+1. The
set of symbolic traces, written as Trace(SC), is the set of
all traces which can be generated according to the symbolic
semantics.

Definition 3 (Node Invariant). Given a smart contract SC =
(N, root, E, I), a predicate ψ is an invariant at node n,
denoted as I(n) = ψ, if and only if last(tr) |= ψ for all
tr ∈ Trace(SC) s.t. π(last(tr)) = n.

Intuitively, the above definition of ψ is an invariant at
node n if and only if ψ is satisfied by all the traces leading to
node n, i.e., when the trace reaches n, its variable valuation
satisfies ψ. Function π maps the state to the corresponding
node n.

By construction, node invariants are the conjunction of
all constraints from path constraints and symbolic valua-
tion constraints. As shown in Algorithm 1, we infer the
invariants of node n according to its parent quantity. In the
algorithm, if the parent(n) is 0 (lines 10-12), that means this
node is the root node, true is returned when verifying in
the function verifier, however, it is the contract invariant
XVerify learned in the contract verifier, e.g., (s n0 0 ≤ 760)
for contract in Figure 2. If the node has more than one parent
(line 4-10), we disjunct all the constraints of its parent nodes.
Intuitively, this is because n can only be reached via one of
its parents. The other parts of the algorithm are quite self-
explanatory.
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NBC-ops
φ′ = φ ∧ (Fr(op) < upperbound)]

(pc, φ) −→s (pc+ 1, φ′)
FC-ops

φ′ = φ[op 7→ Fr(op)]

(pc, φ) −→s (pc+ 1, φ′)

JUMPI (cond, T)-1
φ′ = φ ∧ ¬cond

(pc, φ) −→s (pc+ 1, φ′)
JUMPI (cond, T)-2

φ′ = φ ∧ cond
(pc, φ) −→s (T, φ

′)

Fig. 6. Symbolic execution rules

Algorithm 1: Inv Infer inferI(CFG, n, φ(root))

1 if |parent(n)| = 1 then
2 n′ ← parent(n) ;
3 return inferI(CFG, n′) ∧ φ(n) ;
4 else if |parent(n)| > 1 then
5 ζ ← false ;
6 for n′ ∈ parent(n) do
7 ζ ← ζ ∨ (inferI(CFG, n′) ∧ φ(n)) ;
8 end
9 return ζ ;

10 else
11 return φ(root) ;
12 end

Algorithm 2: Lazy Check lazyCheck(CFG)

1 result← “unsat”;
2 for n ∈ (fail nodes) do
3 I(n)← inferI(CFG, n);
4 result = check(I(n));
5 if result is “sat” then
6 return result;
7 end
8 end
9 return result;

Proposition 1. If all the fail nodes are unreachable, the
contract is safe.

With Algorithm 1, we further introduce Algorithm 2 to
check the reachability of the fail nodes. If the result is “sat”
which means the fail node is reachable, we will terminate
the loop and return the result. Otherwise, we will check all
the invariants of the fail nodes whic are derived from the
assertions in the contract. If the result is “unsat” till the end
of the loop, that means all the fail nodes are unreachable,
we claim the contract is verified.

3.3 Invariant Learning

In this subsection, we present our “guess and check” ap-
proach for loop invariant learning in function verifier first
and then extend it to the contract invariant learning in
contract verifier regarding to the domain-specific features
of smart contracts.

3.3.1 Loop Invariant Learning in Function Verifier
Intuitively, the invariant generator consists of three parts,
i.e., Label generator, Learner, and Validator. The details are
shown in Algorithm 3 where n is the head node of a

Algorithm 3: Loop Invariant generateLI(CFG, n)

1 DS = rand(V ar);
2 LDS = label(DS,CFG, n);
3 while not timeout do
4 (flag, ds)← checkErr(LDS);
5 if !flag then
6 return (“falsified”, ds);
7 end
8 φ← learnINV (LDS);
9 CE ← validate(φ,CFG, n);

10 if CE = ∅ then
11 return (“succeed”, φ);
12 else
13 LDS ← label(CE,CFG, n) ;
14 end
15 end
16 return ”timeout”;

loop (i.e., a node representing the start of a loop). In this
algorithm, V ar is the set of loop-related variables. The
valuation set of variables in V ar at node n (denoted as DS)
is initiated by random sampling at line 1 and the size of
the initial DS is decided empirically, e.g., 10. In general, a
reasonably large set of random samples are often helpful in
learning candidate invariants efficiently. Labelling at line 2
is based on the CFG and the concrete input (a valuation from
DS), the program is executed from node n until termination.
During the execution, node n may be visited iteratively and
the variable valuations upon reaching n are also added
to DS. The valuations in DS are categorized into three
categories, i.e., ‘+’ for positive, ‘-’ for negative, and ‘e’ for
error. A valuation a which starts from an initial valuation
a0 and becomes a after zero or more iterations is labelled
based on whether a0 satisfies I(n) and whether eventually
an assertion is violated. Specifically, it is labelled

• ‘+’: if a0 satisfies I(n), and none of the fail nodes is
reached during the execution.

• ‘-’: if a0 violates I(n) and any fail node is reached
during the execution.

• ‘e’: if a0 satisfies I(n), and any fail node is reached
during the execution.

The invariant is learned and strengthened from line 3
to line 15. If there is any ‘e’ valuation in LDS, “falsified”
is returned at lines 4-7. A candidate invariant is expected
from function learnINV at line 8. The idea is to guess a
candidate invariant in the form of a classifier which sepa-
rates the valuations labeled with ‘+’ from those labeled with
‘-’. Specifically, we adopt the LINEARARBITRARY algorithm
proposed in [20], which is built upon SVM and decision tree
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classification, to infer candidate invariants in the form of
arbitrary combination of conjunction or disjunction of linear
inequalities.

The learned candidate invariant is then validated by the
Validator. The Validator is constructed according to Hoare
logic [25], in which the precondition is the predicates from
the node before the loop head node. The postconditions are
all the assertions which the traces arrive through the loop
head node. The inductiveness is achieved by checking the
invariant at the loop head node. A candidate invariant φ is
indeed an invariant if and only if it is checked to satisfy all
the above Hoare rules by the Validator. Then, “succeed” is
returned together with the validated invariant. Otherwise,
the labelled counterexample is added into the data sample
set LDS to learn a new candidate by the Learner at line 13.
The invariant generator will eventually return “timeout” at
line 16. Interested readers can refer to [26] for further details.

3.3.2 Contract Invariant Learning in Contract Verifier
Since functions in the contract can be called repeatedly
through transactions, we have a “loop” at the contract
level, which allows us to extend the “guess and check”
approach to the contract invariant learning. This contract-
level “loop” is different from ordinary loops in two ways.
We explain how to adapt the approach to such a loop re-
garding the differences. First, there is a constructor function
in the contract, which can only be called once. Thus it is
excluded from our loops but only provides the precondition
in our implementation. Second, there is no terminating
conditions (for simplicity, we ignore the instructions such as
SELFDESTRUCT, which terminates the contract completely
in this part of the discussion) in this loop, as the functions
can be invoked as many times as possible. Note that this
makes it challenging to correctly label the sample. Existing
approaches on learning loop invariants run a test until
completion and then label it positive only if there is no
assertion violation. In our case, this becomes impossible
since there is always the possibility that a future function
call will result in an assertion failure. For example, if a data
sample satisfies the precondition and violates the assertion
only after 200 function calls of the same function, it is a
counterexample. However, XVerify only executes the “loop”
20 times while the assertion still holds. Thus, it is labelled as
positive ‘+’. We remark that such a problem does not mit-
igate the correctness of our approach nor the effectiveness
of our approach on verifying smart contracts. The reason is
that such mislabeling only happens if the sample is a true
counterexample, in such case we will not be able to verify
the smart contract any way.

To start the learning, we randomly generate data sam-
ples. Similar to the invariant learning in loops, we generate
one set of data sample that satisfies the precondition. Then,
we run all the public functions one by one with the same
data sample to generate the iter1 (iterate 1) states. This
process is to simulate the transactions initiated by many
users who can call any function with the same input. Based
on these iter1 states, we further run all the functions again
to get the iter2 states and further again till iter5, which
means we only mimic the transactions to call a function
5 times at most. To minimize the computation cost, we
only choose the unique states at each iteration to keep on.

Algorithm 4: Overall Verification Algorithm

1 CFG← CFG construct(SC);
2 result← lazyCheck(CFG);
3 if result is “unsat” then
4 return “succeed”;
5 else
6 result← generateLI(CFG, n);
7 if result is “succeed” then
8 return “succeed”;
9 else

10 return “warning”;
11 end
12 end

Our observations show that this step is necessary as many
functions lead to the same state in practice. With the same
rules explained in Section 3.3.1 for labelling, we get the
labelled data from the Label generator lastly.

The Learner and the Validator work similarly as before
except that the root node acts as the “loop head” now. As
long as a candidate invariant is validated by the Validator, a
true invariant is found and all the assertions in the contract
are verified simultaneously.
Example 1. As the contract shown in Figure 2, a candi-

date invariant (buyPrice > 0 ∧ buyPrice ≤ 760) is
returned by the Learner. The Hoare rules are as fol-
lows: 1© The precondition is buyPrice = 760; 2© Two
postcoditions in this example are buyPrice 6= 0 and
msg.value = amount/buyPrice; 3© The inductiveness
is checked at the root node. The invariant is the same
all the time, since the variable buyPrice is not modified
by any function in this contract. Thus, it is trivial to
conclude that the Hoare rules are all satisfied, and it is a
valid invariant.

3.4 Overall Algorithm
The overall approach is shown in Algorithm 4. Given a
smart contract SC, we first construct a labelled CFG at line
1. Then, we try to verify whether each fail node is reachable
by lazyCheck at line 2. If the result is “unsat” which means
all the fail nodes are unreachable, “succeed” is returned at
line 4. Otherwise, there is at least one fail node reached in
the analysis. Algorithm generateLI is invoked to invoke
the contract invariant in at line 6. If the result is “succeed”,
a valid contract invariant is generated and all the assertions
are verified against this contract invariant. Thus, “succeed”
is returned at line 8. If the result is “timeout” or “falsified”,
a “warning” is returned to the user for manual inspection at
line 10.
Theorem 1. Algorithm 4 returns “succeed” if and only if

assertion violation is not possible.

Proof: Assume there is an assertion violation detected
by our overall verification algorithm, that means there is
a trace tr = 〈s0, s1, . . . , sn〉 whose last state sn |= ψ, so
the corresponding fail node can be reached. If it is detected
by the subroutine lazyCheck with the default contract in-
variant true, the result returned must be “sat” and the loop
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invariant generation algorithm is invoked. In this algorithm,
we return either a concrete false example of the trace or
a “timeout” result because the validation of the candidate
invariant always fails. Thus, it is impossible for Algorithm 4
to return “succeed” while some assertion is violated.

4 IMPLEMENTATION AND EVALUATION

To evaluate the proposed approach in this paper, we have
implemented a prototype tool named XVerify. It consists of
around 6,000 lines of C++ code and the implementation
is publicly available at GitHub4. XVerify takes the smart
contracts as input and outputs the verification results. Once
a smart contract is given, it will be compiled into EVM
bytecode and further disassembled into EVM instructions
by Solidity compiler and Ethereum toolkit. With the EVM
instructions, XVerify starts to construct the labelled CFG
and initializes invariants and assertions for each node. Later,
LINEARARBITRARY [20], a learning algorithm built on LIB-
SVM [27] and C5.0 [28] which is capable of learning an
arbitrary combination of linear classifiers, is employed to
generate loop invariants and contract invariants. Finally, we
adopt Z3 solver [29] to check the validity of the generated
invariants and specified assertions through bit-vector con-
straint solving.

4.1 Evaluation
In the following, we evaluate the effectiveness and efficiency
of XVerify in practice by studying the following research
questions (RQ).

• RQ1: How effective is XVerify in verifying the smart
contracts compared to state-of-the-art tools, i.e., So-
licitous [15] and VeriSmart [16]?

• RQ2: How efficient is XVerify in verifying the smart
contracts compared to the above two tools?

• RQ3: How does XVerify perform in detecting the
smart contract vulnerabilities when verification fails?

All experiments are conducted on a machine with an
Intel Core i7-7700HQ CPU with 8 cores clocked at 2.8GHz,
and 23.4GB of RAM, running the system of 64-bit Ubuntu
16.04LTS. The dependancies of XVerify include Z3 (version
4.8.8) and the boost library (version 1.68.0). As of now, it is
developed for Solidity before version 0.6.10 and EVM toolkit
before version 1.9.15.

4.1.1 Benchmarks
We choose Solicitous [15] and VeriSmart [16] for baseline
comparison as they are state-of-the-art. In particular, So-
licitous is developed with the Ethereum Foundation and
is built-in with Ethereum framework. The experiments are
conducted with 87 unique Solidity contracts with more than
12k assertions, including assertions from assert statements
by users and arithmetic operations automatically generated
by XVerify. These contracts consist of 57 contracts of version
v0.5 and 30 contracts of version v0.6, as Solicitous supports

4. The code and the experiment results can be found at https://www.
dropbox.com/s/tob7fxj9yo33507/xverify.zip?dl=0. We did not upload
it to Code Ocean because there are dependency libraries which are not
supported

overflow checks since Solidity version v0.6 and VeriSmart
only supports v0.5 Solidity contracts. They are all selected
from the test subjects reportedly analyzed by Solicitous
in [15], and are available through the Etherscan explorer5.
These contracts are picked out according to the following
criteria: 1© the top 30 contracts have the most transactions,
or 2© the top 30 contracts hold the most valuables. We be-
lieve these contracts deserve more attentions as they either
have wider effects on more users or cause more losses if they
are vulnerable. With these standards, 57 v0.5 contracts, three
contracts are overlapped, are selected. The contract with
the most transactions among them are 1, 177, 328 and the
one with the maximum balance is 1, 271, 260 Ether. 30 v0.6
contracts that have most transactions (1,519) are selected.
We omit the top 30 most valuable contracts of v0.6 as almost
all the balances of the contracts are 0. Our study shows that
the average lines of code for these contracts is 912 and the
biggest contract file6 has around 5,700 lines of code. They
are complicated real-world contracts and not easy to verify.

4.1.2 Results

To conduct the experiment, we further acquired the detailed
information from Etherscan, such as compiler versions, op-
timize options and contract names deployed, which are all
used for precise bytecode generation. The global wall time
limit for all tools are 3,600 seconds and Z3 solver requests
for XVerify and VeriSmart are 10 seconds (the default wall
time is adopted for Solicitous as there is no option for users).

The results are demonstrated in Table 2 and Table 3. In
these tables, columns safe, unsafe and unk. (simplified for
“unknown”, which is due to either exception or timeout) are
the results returned by the tools. Column “unsafe” includes
two scenarios, i.e., alarm and warning. Scenario alarm only
effects on XVerify. It means, at least, one concrete coun-
terexample that fails an assertion in Invariant generator is
returned while learning the invariant of a contract. Scenario
warning for Solicitous is consistent with the raw output of
the tool. It is the unverified items for VeriSmart, and for
XVerify it means there is no contract invariant generated to
fully verify that contract. The possible reason may be due to
the failure of the invariant learning which is caused either by
the limited capabilities of our learning module that cannot
converge in time or the potential violation of any assertion.
Thus, a counterexample which fails the assertion at the
previous step, the function level, is returned. To conclude,
we are more confident about the vulnerabilities of a contract
if it is labelled as alarm rather than labelled as warning
and the vulnerabilities labelled as alarm take priority over
those labelled as warning for users. Columns “TN”, “FN”,
“TP” and “FP”, stand for true negatives, false negatives,
true positives and false positives, are organized after we
manually examined the results between the contract codes
and the tools’ output. A true negative occurs when tools
return “safe” and the contract is indeed “safe” according
to our manual check. While a false negative occurs when
tools return “safe” but the contract is actually “unsafe”. Vice
versa, a true positive is the case when tools return “unsafe”

5. https://etherscan.io as of May. 4th, 2020.
6. Contract address: 0x1e0447b19bb6ecfdae1e4ae1694b0c3659614e4e
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1 function add(uint a, uint b)internal pure returns(uint c){
2 c = a + b;
3 require(c >= a);
4 }

Fig. 7. Require pattern for safeMath

TABLE 2
Comparison Results with Solicitous on v0.6 Smart Contracts

safe unsafe unk. TN FN TP FP
alarm warning

Solicitous 0 N.A. 28 2 N.A. N.A. N.A. N.A.
XVerify 7 7 13 3 7 0 6 14

and the contract is “unsafe” and a false positive occurs when
tools return “unsafe” but the contract is actually “safe”.

In the process of manually checking the results by VeriS-
mart, we found multiple false positives which are caused by
the same pattern shown in Figure 7. It is quite clear that, if
there is an overflow in the ADD operation, the transaction
will be reverted by line 3. However, VeriSmart fails to
catch such guard conditions. In contrast, we avoid such
false positives. XVerify attaches the operands a and b to
the result c, and records the potential overflow constraint
in the meantime at line 2. Then, when executing to line 3,
the result c is involved in a comparative operation, and the
other operand is one of the operands attached to the result c,
moreover, the following node is a revert node, we conclude
that the comparative operation is to avoid addition overflow
problems by the developers. Same methods are also applied
to other arithmetic operations like MUL, SUB etc.

To make the comparison fair, three sets of data by
VeriSmart are shown in Table 3. Row VeriSmart1 is the
result which takes the pattern in Figure 7 as a false positive.
Row VeriSmart2 and VeriSmart3 are both the results which
ignore the effect of the pattern in Figure 7. We demonstrate
them both here is because VeriSmart returns all the analysis
results of the arithmetic operations and assertions for a
contract. Some of these results are correct, some are not.
The difference between row VeriSmart2 and VeriSmart3 lies
only in “TP” and “FP” columns. A contract is categorized
into “FP” if there are still other false positives except above
“require” pattern in VeriSmart2. A contract is categorized
into “TP” instead of “FP” as long as a true positive is
returned except above “require” pattern in VeriSmart3. For
example, if there is only one warning caused by the “re-
quire” pattern in Figure 7 for a contract, this contract is
categorized into “warning” and viewed as “FP” in row
VeriSmart1, but it is categorized into “safe” and viewed as
“TN” in row VeriSmart2 and VeriSmart3. It is the reason that
the number of columns “safe” and “TN” is bigger than that
in row VeriSmart2 and VeriSmart3.

4.1.3 Effectiveness of XVerify

We illustrate the effectiveness of XVerify with the number
of correctly verified contracts (TN) shown in Table 2 and
Table 3.

In Table 2, XVerify reports 7 contracts as “safe” and
these contracts are true negatives after a carefully manual

TABLE 3
Comparison Results with VeriSmart on v0.5 Smart Contracts

safe unsafe unk. TN FN TP FP
alarm warning

VeriSmart1 3 N.A. 14 40 1 2 2 12
VeriSmart2 8 N.A. 9 40 5 3 4 5
VeriSmart3 8 N.A. 9 40 5 3 9 0

XVerify 13 8 14 22 13 0 10 12

check. They are successfully verified. In contrast, this num-
ber for Solicitous is 0. A manual study of the results by
Solicitous shows that, it blindly emits warnings for almost
all the arithmetic operations in these contracts except for
two unknowns. It is quite challenging and discouraging for
users to identify true positives from plenty of false positives.
Thus, we did not further categorize those results. Back to
XVerify , there is one contract among the 7 “safe” contracts
which is verified with the help of the contract invariant.
Same results also manifest in Table 3. In this comparison
experiment, XVerify returns 13 contracts as “safe” and they
are indeed true negatives after our manual examination. 3
out of 13 contracts are verified with the assistance of contract
invariants. As a comparison, VeriSmart returns 3 “safe”
contracts, shown at row VeriSmart1, if we take the pattern
in Figure 7 as false positives. 2 of these 3 contracts are
false negatives because VeriSmart fails to catch the assertion
statements in the contracts. If we ignore the false positives
caused by the “require” pattern, the “safe” contracts will
be 8 as shown by VeriSmart2. However, another one more
false negative is also brought in besides the previous two
described in VeriSmart1. This false negative is also caused
by the failure to capture the assertion statement.

We also identified two more kinds of vulnerabilities
which cannot be detected by other two tools. They are the
boundary checks for array and enum inserted by Solidity
compiler.
To answer RQ1: XVerify can correctly verify a pleasant
number of smart contracts and it is quite competitive, 7 vs
0 and 13 vs 1/5 in true negative (TN), in comparison with
Solidity official tool Solicitous and VeriSmart. We can also
detect two more vulnerabilities at the same time.

4.1.4 Efficiency of XVerify
We illustrate the efficiency of XVerify by comparing the
average time consumed during the analysis. As shown in
Table 4, column “Fin./To.” stands for “Finished/Total”,
which is the number of contracts finished analysis over
the total contracts. Column “Time” is the average time
consumed for the contracts which finished the analysis by
each tool on these test subjects.

In this table, XVerify averagely takes about 100.2 s to
finish analyzing 27 (out of 30) contracts in v0.6 test reposi-
tory. While Solicitous finishes 28 contracts with an average
of 174.1 s. For the v0.5 test repository, XVerify performs
much better with an average time of 95.8 s over 1583.6 s
and finishes more contracts at the same time. The reason
for the advantage may be that XVerify terminates analysis
once an alarm or warning arises. We believe this setting
is reasonable, as we are uncertain about the subsequent
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TABLE 4
Average time consumption for verification

v0.6 Fin./To. Time (s) v0.5 Fin./To. Time (s)
Solicitous 28/30 174.1 VeriSmart 17/57 1,583.6

XVerify 27/30 100.2 XVerify 35/57 95.8

1 function sendBatch(address[] recipients, uint[] values){
2 // require (recipients.length == values.length);
3 for (uint i = 0; i < recipients.length; i++) {
4 _fullTransfer(msg.sender, recipients[i],values[i]);
5 }
6 }
7
8 bytes32[] values;
9 mapping (bytes32 => uint256) indexes;

10 function remove(bytes32 value) public {
11 uint256 valueIndex = indexes[value];
12 if (valueIndex != 0) {
13 uint256 lastIndex = values.length - 1;
14 bytes32 lastvalue = values[lastIndex];
15
16 uint256 toDeleteIndex = valueIndex - 1;
17 values[toDeleteIndex] = lastvalue;
18 ...
19 }
20 }

Fig. 8. Alarm cases by XVerify

results after the alarm or warning. In contrast, Solicitous
and VeriSmart return the results of all arithmetic operations
and assertions in Solidity source code to users. This process
costs too much time.
To answer RQ2: XVerify outperforms Solicitous and VeriS-
mart on the sacle of time consumption.

4.1.5 Detecting Vulnerabilities by XVerify
We study the capabilities of XVerify in detecting the contract
vulnerabilities when the verification fails.

As shown in Table 2, there are 7 alarms and 13 warnings
returned by XVerify. In Table 3, there are 8 alarms and
14 warnings. Note that, an “unsafe” contract is always
categorized into “FP” as long as there is one incorrect alarm
or warning by XVerify. XVerify stops analyzing once an
alarm or warning arises, which is different from Solicitous
and VeriSmart. The 6 true positive (TP) contracts consist
of 5 from 7 alarms and 1 from 13 warnings in Table 2.
Same situation happens in Table 3, too. These 10 TPs are
comprised of 7 from 8 alarms and 3 from 14 warnings.

As we have discussed before, we are more confident
about the correctness in detecting vulnerabilities by alarms.
They are usually generated by a concrete counterexample
which satisfies the precondition and violates an assertion
while labelling. One example of such an alarm is shown
in Figure 8. The function sendBatch() is to transfer values
to recipients one by one with a for loop. There are two
implicit assertions which are i < recipients.length and
i < values.length in the loop. They are generated automati-
cally by Solidity compiler for arrays to ensure the operations
are within the boundaries. The alarm raises when the length
of values is smaller than that of recipients.

There are also 3 similar FPs from alarms in Table 2
and Table 3 by XVerify. As the function remove() shown
in Figure 8, an array values records the contents of input
value and a mapping indexes records the corresponding

index for each value. The implicit assertion for array bound-
ary by Solidity compiler is inserted at line 17, which is
toDeleteIndex < values.length. When some value is to
remove, the function will retrieve the index of that value
from the mapping at line 11 and then overwrite it with the
last value in values array at line 17. In such contracts, the
developers keep the indexes accord with the values all the
time. That means, the index toDeleteIndex at line 17 will
never beyond the boundary of the array. However, XVerify
can not infer the relationship between array values and
mapping indexes, which generates these 3 FPs.

On the other hand, column “warning” brings in most of
the FPs, i.e., 12 out of 14 FPs in Table 2 and 11 out of 12 FPs
in Table 3. The reasons come from 3 aspects: 1© Fail to learn
loop invariants. There are some complicate loops in the con-
tracts which beyond XVerify ’s capability this moment, like
nested loops. 2© Insufficient time for z3 solver. Some con-
straints are complicate enough or some constraints involve
in the modulo operation, which makes the solving almost
impossible. 3© Unsupported types by XVerify currently.
Some data types are not supported, like nested mappings,
i.e., mapping (address⇒ mapping(address⇒ struct))etc.
To answer RQ3: XVerify can pinpoint the vulnerable con-
tracts if it returns “alarm” to users, but may be not so
accurate if “warning” is returned.

4.1.6 Threats to Validity
There are several threats in our evaluation. Firstly, we select
the top30 contracts in regard of most transactions and most
balance as our benchmarks to avoid the representative prob-
lem, although the duplicates have been removed. Secondly,
different specialities on different Solidity contract versions
by the comparison tools render us to split the test repository
into v0.6 and v0.5 to avoid unfair problems. Thirdly, we
suppress some false warnings introduced deliberately by
the compiler with specific patterns. For example, Solidity
generates 0xFF(64Fs)... by (0 − 1). Lastly, we categorize the
analysis results by tools into TPs, TNs etc. with our manual
examination. This work is quite challenging and may be
erroneous in some cases although we have tried our best.
One last reflection is about the boundary checks for arrays,
structs, enum etc. by Solidity compiler, these checks are
compiled into instruction “0xfe” which is the same as asser-
tions. We think maybe it is more reasonable to compile them
into “0xfd” which corresponds to requirements instead of
assertions.

5 RELATED WORK

In this section, we review the works closely related to ours,
mainly on the verification of smart contracts and also a brief
illustration on the invariant generation techniques.

5.1 Verification on Smart Contracts

Existing verification works on smart contracts can be
roughly categorized into two categories, i.e., function-level
verification and contract-level verification.

Many early static analysis works focus on detecting
vulnerabilities by scanning specific patterns in path con-
ditions and traces, like identifying timestamp dependency
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by Oyente [30], detecting suicidal smart contracts by sCom-
pile [24] and prodigal contracts by Maian [31]. Also,
there are other similar well-known tools, like Mythril [32],
Osiris [33], Manticore [34] etc. These works are more testing
than verification and they can hardly provide any sound-
ness or completeness guarantees.

Some other works are based on theorem provers, like
Kevm [35] and Ksolidity [36]. They are both based on the
K framework to develop executable formal semantics on
EVM and Solidity. They can check contracts against given
specifications with the help of deductive program verifiers.
Sidney ect. [37] extends an existing EVM formalisation in
Isabelle/HOL by a sound program logic at the level of
bytecode to prove the correctness of properties for smart
contracts. These works provide the capabilities to capture
precise vulnerabilities in the formal semantics of the con-
tracts. However, the process can be quite cumbersome usu-
ally as the properties checked also need to be formalized
in the language of the theorem prover, which damages the
usability for contract developers.

Also, some works leverage the existing facilities to verify
the contracts. Securify [11] symbolically encodes the de-
pendence graph from the EVM bytecode into Datalog and
targets specific types of bugs encoded as data patterns to
prove if a property holds or not. However, Securify does
not support numerical analysis and cannot be used for
finding arithmetic bugs. [38] and Zeus [12] translated smart
contracts into intermediate representations like F* programs
and LLVM bitcode respectively, then leverage existing tools
for F* and Seahorn to reason about the contract correctness.
VerX [13] introduces delayed predicate abstraction approach
based upon symbolic execution to verify temporal safety
specifications written in PastLTL by users. However, VerX
does not perform abstraction refinement; thus, the coun-
terexamples it produces can be spurious, moreover, the
successful verification may require the users to provide
additional predicates [39]. A similar work is also done
by Smartpulse [39] recently. It differs from VerX in that
it is not limited to safety problems, but also capable of
checking liveness properties and never produces spurious
counterexamples. However, they all require the users to
clearly illustrate the properties with their specification lan-
guage, and they can even achieve full verification if the
specification is detailed enough, which may be a challenge
for the developers.

In a word, above works focus on the functional safety
of smart contracts and lack the ability for contract level
reasoning although some tools can mitigate such a situation
with detailed specifications. Some recent works have turned
to this problem. Celestial [40] is a work which translates
the contracts and the specifications to F* to formally verify
the contracts. It allows the users to annotate properties
of interest with a Solidity-style specifications. Verisol [41]
formalizes semantic conformance of smart contracts against
a state machine model with access-control policy. It is a
highly-automated formal verifier for Solidity which can
produce proofs as well as counterexamples. solc-verify [14]
translates smart contracts into the Boogie intermediate lan-
guage, and leverages the verification toolchain for Boogie
programs for analysis. The translation is on the source code
level, which allows the users to write annotations directly

in the contract. These works all require users to manually
provide specifications or invariants in some forms, which
can be thought as semi-automated tools.

Solicitous [15], the formal engine inside the official So-
lidity compiler, directly models the Solidity contracts with
constrained Horn clauses and leverages the generic theorem
provers for fully verification. However, maybe limited by
the capabilities of CHC solver on invariants, the perfor-
mance is not so pleasant in the experiment. VeriSmart [16]
automatically discovers transaction and loop invariants
with the help of domain-specific refinement to verify smart
contracts. However, the refinement is limited in certain
simple linear forms, non-linear and compound invariants
are not taken into consideration.

5.2 Invariant Generation Techniques
Invariant generation is a long standing problem which is
important for program analysis and automated verification.
Many approaches have been proposed for loop invariant
generation, including those based on abstraction interpreta-
tion [42], [43], [44], those based on counterexample-guided
abstraction refinement [45], [46] or interpolation [47], [48],
those based on constraint solving and logical inference [49],
[50], [51] and those based on guess-and-check machine
learning approaches [19], [20]. We leverage the approach of
machine learning loop invariant generation in this work,
since the other approaches often suffer from scalability
issues.

6 CONCLUSION

We leverage the static analysis techniques (i.e., lazy anno-
tation and loop invariant generation techniques) to design
and implement a formal verifier called XVerify for EVM
bytecode contracts. We evaluate it on 87 contracts with more
than 12k assertions through a comparison experiment with
two state-of-the-art tools, VeriSmart [16] and Solicitous [15].
The experiment results show that XVerify performs well on
effectiveness and efficiency over the other tools. We will
further improve the tool to achieve better generality for
practical use in the future.
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[31] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings

of the 34th Annual Computer Security Applications Conference, 2018,
pp. 653–663.

[32] “Mythril: a security analysis tool for evm bytecode,” https://
github.com/ConsenSys/mythril, accessed: 2021-08-27.
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