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Abstract—Recently, several abstraction refinement techniques
have been proposed to improve the verification precision for
deep neural networks (DNNs). However, these techniques
usually take many refinement steps to verify a property and
the refinement decision in each step is hard to interpret, thus
hindering their analysis, reasoning and optimization.

In this work, we propose SURGEON, a novel DNN verification
refinement approach that is both effective and interpretable,
allowing analyst to understand why and how each refine-
ment decision is made. The main insight is to leverage the
‘interpretable’ nature of debugging processes and formulate
the verification refinement problem as a debugging problem.
Given a failed verification procedure, SURGEON refines it in an
iterative manner and, in each iteration, it effectively identifies
the root cause of the failure and heuristically generates fixes
according to abstract transformers.

We have implemented SURGEON in a prototype and evaluated
it using a set of local robustness verification problems. Besides
the interpretability, the experimental results show our approach
can improve the precision of base verification methods and is
more effective than existing refinement techniques.

Keywords—neural network verification; abstraction refinement;
abstraction debugging

1. INTRODUCTION

With the exceptional performance of deep neural networks
(DNNs) in solving many challenging real world problems,
recent years have witnessed DNNs’ increasing integration into
a wide spectrum of applications, ranging from image recogni-
tion [1], [2], fraud detection [3], [4] to machine translation [5],
[6]. However, their adoption into safety critical systems, such
as self-driving cars [7], [8] and medical diagnosis [9], [10], is
still in the early stage, since most DNNss still lack correctness
guarantees.

In the last decade, DNNs’ security problem has received much
attention from academia. Besides conducting bug studies [11]
and developing testing techniques [12], researchers have also
proposed multiple formal verification approaches [13], [14],
[15], [16], [17], [18], [19] to certify the correctness of DNNss.
While complete methods are precise but can only handle tiny
neural networks, most of these efforts are incomplete methods,
which need to approximate DNNs’ behaviors and trade off
between analysis precision and scalability. Afterward, several
refinement techniques [20], [21], [22], [23] were proposed to
further enhance the verification precision. The basic idea is

Figure 1: A neural network with ReLU activation functions,
where the values on edges represent coefficients of weight
matrix W and the values beside each node are biases b.

to split one verification task into several sub-tasks and then
analyze each of them separately. These techniques differ in the
way how the split is performed (see Sect. 7). Here, we briefly
illustrate how the refinement works using the DNN (denoted
as N) in Fig. 1. We take DeepZ [17], an abstraction-based
analysis approach, as the primary verifier and ReluVal [20], a
refinement technique that bisects input features according to
interval gradients, as the refinement method.

Suppose our task is to certify N is robust around an input
(0,0) with perturbation range ¢ = 1. That is, N yields same
prediction for any input z € [—1,1] x [—1, 1]. Initially, we em-
ploy DeepZ to verify the property, but the final abstraction fails
to prove it. Then a refinement process is invoked, which is vi-
sualized in Fig. 2. In particular, after DeepZ fails to verify the
property, we bisect the input region with its second dimension,
and consequently obtain two sub-regions, i.e. [—1,1] x [—1, 0]
and [—1, 1] x [0, 1]. Next, DeepZ is further employed to prove
the property for these two regions. It succeeds proving the
robustness property for the first region, but fails for the second
one. Afterwards, we perform the second refinement to bisect
the unverified region. This procedure continues, until all the
splitted regions get verified. As shown in Fig. 2, ReluVal takes
four refinement actions before proving the robustness property.
We remark that, despite the property being verified, the above
refinement procedure can be optimized indeed. If we split
the abstraction for neuron z; o at point 0, the two yielded
sub-tasks can be verified by DeepZ and thus the property is
proved. More importantly, it is the transformer which takes
the aforementioned abstraction as input that introduces unsafe
states into the analysis and thus splitting that abstraction makes
more sense. However, previous refinement techniques provide
almost no clue for identifying this ‘optimum’.

The entire refinement processes of existing techniques are
usually ineffective and difficult to interpret. That is, these
techniques may take many more refinement steps to verify
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Figure 2: Refinement through input feature bisection, guided
by interval gradients. The box Pre denotes the allowed
perturbation region (i.e. [—1,1] x [—1, 1]), the shadowed boxes
denote the regions that can be directly verified by DeepZ,
and the null boxes denote regions to be verified. It takes 4
bisections before proving the robustness for Pre.

a property than needed, and it is challenging for humans to
interpret the refinement decision in each refinement step, i.e.
understanding or reasoning the cause and the consequence of
each refinement decision, which hinders the analysis, debug-
ging, optimization and generalization of these techniques.

In this work, we propose a verification refinement technique,
named SURGEON, that is both effective and interpretable.
The main insight is to leverage the ‘interpretable’ nature of
debugging processes and rephrase abstraction refinement for
DNN verification as a debugging problem. Below, we briefly
explain how SURGEON works.

Given a failed DNN verification procedure, SURGEON refines
it through an iterative debugging process. In each iteration,
it first attempts to locate the root cause of the failure, i.e.
the earliest transformer that introduces unsafe states into the
analysis. Precisely pinpointing that transformer is costly as
it requires exact reasoning about DNNs. Thus, SURGEON
employs optimization techniques to identify the likely root
cause in a cost-effective way (see Sec. 4-B).

Next, SURGEON locates the corresponding transformer for
fixing (see Sec. 4-C). It heuristically finds the top k£ impactful
dimensions in the input abstraction and append to the abstract
transformer fixing operators which refine an abstraction by
splitting. It should be noted that, heuristics themselves do not
render a procedure hard-to-interpret. Instead, good heuristics
can make an refinement action more effective and thus benefits
the whole refinement procedure.

One non-negligible problem of the above procedure is that
our root cause identification method is generally imprecise.
It may miss the real root cause transformer, in which case,
SURGEON would perform the refinement in the wrong place.
To mitigate this problem, we further make SURGEON config-
urable, allowing it to trade interpretability to certain degree
for the effectiveness. In particular, once identifying the likely
root cause transformer, SURGEON may choose an earlier
transformer as the fixing site.

We have realized SURGEON on top of DeepZ and evaluated it
using local robustness verification problems. The results show
SURGEON can improve the precision of DeepZ and is more
effective than existing refinement techniques.

In all, this paper makes the following contributions:

o We leverage the ‘interpretable’ nature of debugging pro-
cesses and rephrase the refinement problem for DNN veri-
fication as a debugging problem.

« We propose SURGEON, an automatic debugging technique
for refining DNN verification. Through leveraging adver-
sarial sampling methods and program fixing techniques,
SURGEON is both effective and interpretable.

« We have implemented SURGEON in a prototype and eval-
uated it thoroughly. The results confirm the precision im-
provement and effectiveness of our proposal.

Structure. The rest of this paper is structured as follows.

Sect. 2 presents the backgrounds and briefs our approach.

Then, Sect. 3 formulates the problem, Sect. 4 details our

approach, and Sect. 5 shows the evaluation of our approach.

Sect. 6 addresses some concern related to this work. Finally,

Sect. 7 surveys related research and Sect. 8 concludes.

2. BACKGROUNDS AND APPROACH OVERVIEW

This section gives a brief introduction to the backgrounds and
presents an overview of our approach with an example.

2.1 Neural Networks

Neural networks are functions that are usually organized in a
layered structure. Mathematically, N = f,, 10 f,_20---0 f
is a composite function where f; is either an affine function,
i.e. f(x) = Wx+b, or an activation function o(x) that applies
in an element-wise manner. Regarding classification problems,
the outputs of DNNs can be converted into categorical num-
bers, representing the prediction labels. More formally, DNN
N classifies an input z to category c if ¢ = argmaz(N(z)). In
the rest of this paper, we also write N,. to denote f,,_j0---of,
for simplicity.

Example 1. Fig. I shows a DNN that takes rectified linear
unit (ReLU), i.e. ReLU(xz) = max(0,z), as the activation
function. Given an input x, the network first transforms it via
an affine function, i.e. x1 = (xg,0—2xx01+1, To,0+x0,1—2),
after which a ReLU activation function is applied, i.e. x5 =
ReLU (x1). Then, xo will be further transformed in a layer-
wised manner until the output layer. O

Well-trained DNNs have achieved exceptional performances
on many problems, such as Go playing [24], [25], protein
folding [26], but recent studies [27], [28] show that they are
subject to security issues. For instance, they can be easily
fooled by adversarial examples: inputs that are similar to
natural inputs but classified incorrectly by DNNs.

To be resilient to adversarial attacks, a DNN must be (lo-
cally) robust, meaning it draws similar predictions for similar
inputs. Formally, we can specify an end-to-end correctness
property for DNNs as a triple, i.e. {Pre}N{Post}, where
Pre, Post are the precondition and the postcondition, and
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Figure 3: DeepZ abstract domain and transformer.

the triple is valid if Pre holds, executing N establishes
Post. Thus, we write local robustness as {||lz — 2'||, <
e}N{argmax(N(x)) = argmax(N(z'))}, where || - ||,
denotes the p-norm distance, = is a given input and € is
the perturbation range. Due to the high complexity and non-
convexity nature in the DNN computation, formally checking
the robust property is a challenging problem.

2.2 Abstraction-based Verification

Most verification approaches analyze DNNs through approx-
imation and a line of these approaches is based on abstract
interpretation, a methodology that has been well studied in
program verification field. Formally, abstract interpretation
considers a tuple (A, C, a,~, F, F#) where C' and A denote
the concrete domain and abstract domain, («, ) are a Galois
connection that gives abstraction and concretization relations
between the two domains, F and F# are concrete transformers
and abstract transformers.

Given a triple {Pre}N{Post}, the analysis by abstract in-
terpretation yields an abstraction trace T = (ag, a1, ,an)
where ag = a(Pre), a; = ffl(ai_l) for i = 1,2,--- ,n.
The whole trace establish an abstraction for the network,
while we say a; is an abstraction for layer i. If a,, [~ Post,
the verification fails and we call T a failed abstraction
trace. Otherwise, the verification succeeds and the triple is
proved correct. Next, we introduce DeepZ , a typical abstract
interpretation approach for DNN verification, which is the
main focus in this paper.

2.2.1 Abstract Domain

DeepZ is a neural network verification approach built on
zonotope abstractions. A zonotope in R¢ space is defined as
a = >} vk X gk + go, where v, € [—1,1] are symbolic
variables, g are constant vectors in R¢ space. In Fig. 3a, we
show a zonotope abstraction in R? space on the left.

2.2.2 Abstract Transformer

The zonotope abstraction can capture affine transformations
precisely, but over-approximation is required when applied to
ReLU transformations. Given a zonotope a and a dimension 4,
DeepZ first checks whether a; > 0 or a; < 0 holds. If yes, then
ReLU transformation degrades into an affine transformation.
Otherwise, DeepZ uses a parallelogram with the smallest area
to approximate the ReLU curve, as shown in Fig. 3b.

Figure 4: The overall workflow of SURGEON.
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Figure 5: An illustrative refinement procedure via SURGEON.

Example 2. We take DeepZ to analyze the example verifica-
tion task in Sect. 1. We first apply the abstraction function «
on the input range and get the initial abstraction

1
ag = [0

Then we apply aﬁ?ne# transformer on ay and obtain

o[t Frwe Y- e 2]

and the two dimensions can take values in range [—2,4] X
[—4,0]. Next, we apply ReLU# transformer and obtain'

0.667 —1.333 0.667 T 1.333
= X [v1,v2, 03] + .

] o)™

2710 0 0 0

By continuing this process, finally we have

—0.313| %Y

0625 —1.25 0.625 0
45 =1_125 25 —125 0

1.256 T 0.344
]

Local robustness property requires 5o > 251 to be hold for
any concrete execution. But we cannot establish aso > as 1
here and thus DeepZ fails to prove the property. O

2.3 Abstraction Refinement

Due to the over-approximation, abstraction-based approaches
suffer from false negative issues, i.e. they may fail to prove
properties that otherwise hold. For instance, DeepZ fails to

'We round off all coefficients to the nearest thousandth for simplicity.

—5.688



prove the robustness property which indeed hold. To resolve
the issue, the abstractions must be refined so as to eliminate
unsafe states from the analysis.

Recently, multiple techniques [20], [21], [22], [23] have been
proposed to refine DNN verification. The idea is to split an
abstraction into multiple small sub-abstractions and analyze
each of them separately. The original property is verified if it is
verified on all the sub-abstractions. While boosting the analysis
precision, these techniques are usually ineffective and hard to
interpret, i.e. they take more refinement iterations than needed
to successfully verify a property and it is very challenging for
humans to understand each refinement decision, not to say to
analyze, modify or even improve these techniques.

2.3.1 Overview of SURGEON

In this work, we propose SURGEON, an effective and inter-
pretable refinement approach for DNN verification. The core
insight is to leverage the ‘interpretable’ nature of debugging
processes and rephrase the verification refinement problem of
DNNs as a debugging problem. Now, we brief how SURGEON
works. As shown in Fig. 4, once an abstraction-based method
fails to prove a property, SURGEON starts to refine the ab-
straction through debugging the failed abstraction trace in an
iterative manner. For each iteration, it first attempts to identify
the root cause via locating the likely critical abstraction, and
then selects the right abstract transformer for fixing. Below, we
take the failed verification procedure in Example 2 to briefly
illustrate our approach.

Example 3. Fig. 5 visualizes the entire abstraction refinement
procedure by our approach. Initially, after DeepZ fails to prove
the property, we collect a failed verification trace as shown on
the top of the figure. Next, our approach attempts to identify the
root cause transformer of this failure. Through validation, it
finds out abstraction a, is safe while abstraction ay is unsafe,
indicting it is the transformer fl# that introduces unsafe states
into the analysis. Therefore, our approach starts to fix f# .
The fixing process works by inserting a split operation before
the original transformation. That is, before applying f1# , our
approach first performs a split operation on a1, so that the
over-approximation introduced by fl# can be eliminated. With
some heuristics, it chooses to split a1 on its first dimension
at point 0, and consequently yields two sub-abstractions, i.e.
ay and af, respectively. Then we construct two sub-problems,
i.e. {a}} N1{Post} and {a} } N1{Post}, for verification. Next,
DeepZ is further employed and finally both problems get
verified. Therefore, the original problem gets verified and
SURGEON reports ‘VERIFIED’ as the result. O

3. TECHNICAL FORMULATION

This part revisits program debugging and formulates the verifi-
cation refinement problem for DNNs as a debugging problem.
3.1 Program Debugging

Program debugging is an important and large topic that has
been well-studied by the industrial and research community.

This part focuses on the ‘interpretable’ ? nature of debugging.

3.1.1 The ‘Interpretable’ Nature

Program debugging is usually an iterative process and each
iteration consists two sub-procedures: failure diagnosis, aim-
ing at locating root causes of the failure, and fix generation,
aiming at generating fixing action for the failure.

Debugging is essentially reasoning about the causality over
the program and good debugging practice usually generates
effective and interpretable fixes. To see this, let us recall how
developers debug program in practice. To debug a program,
developers usually need to inspect, execute, trace or profile the
target program either manually or in a tool-aided way. Accord-
ing to their witness, developers will guess the root cause of the
failure and validate the guess afterward. Next, they can start to
create fixes for the program with their expertise; if the patch
can not fix the failure completely, they need to start a new
round to tackle the ‘remaining’ failure. Such process continues
until the failure is totally resolved. Finally, they would submit
the fixes (as a pull request) and the industrial practice usually
launch a reviewing process, aiming at evaluating the fix in term
of effectiveness and interpretability. Developers will need to
refine or refactor their fixes if the fixes do not meet the merge
criteria. Apparently, the whole debugging procedure greatly
involves humans’ reasoning efforts and is trustworthy only if
developers have made proper decisions at each step of the
process. In particular, the reviewing process often requires
developers to further explain the root cause of the failure
and why their fix can address the failure. A fix without good
interpretability can be hardly accepted.

The root cause plays a crucial role in program debugging.
Whether we can identify the root cause of the failure matters
to the effectiveness and the interpretability of a debugging
procedure. Without identifying the root cause, a fix decision
is either blinded trials or heuristics-guided, which is (1)
ineffective, providing no guarantee in mitigating or resolving
the program failure, and (2) hard-to-interpret, hindering others
from understanding why and how the fix is performed.

3.1.2 Dependency Graph

To formally discuss program debugging, we can model a
program as a dependency graph as below.

Definition 1 (Program Dependency Graph). A program S
with a desired property ¢ is a dependency graph G =
(S, F, E,entry, error), where S is a set of nodes representing
program states, F' is a set of nodes representing program
statements®>, E C (F U S) x S is a set of directed edges
that represent the dependency relation between each node,
entry € S and error € S denote the entry state and the
error state, respectively.

2Interpretability has been explored in various contexts, but a formal and
universally accepted definition remains elusive. A prevalent, albeit informal,
definition posits: Interpretability is the extent to which a human can compre-
hend the rationale behind a decision. [29].

3In this work, we model each program statement as one graph node. In
general, we may use one node to represent a sequence of program statements,
a.k.a. code blocks or code snippets.
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Figure 7: The dependency graph for an abstraction analysis.

The dependency graph provides a way to visualize the depen-
dency relation among program states and program statements,
allowing us to reason about how program states evolves over
the execution of each program statement, which is very useful
for program debugging, as it can ease us to clearly identify
problematic statements that contributes to the program failure.
For example, in the most simple case where P is a straight-
line program, i.e. P := fy; f1; fo;- -+ ; fn_1, we can model P
as a dependency graph shown in Fig. 6. Assume node s; is
correct. If we observe there is one concrete execution starting
from a state in so finally reaching error and all the states in
s1 can not lead to error, then we know it is statement f7 that
is problematic.

Program debugging is exactly the process to figure out which
program states contains error state and how the error comes
into the system. A good fix generated by debugging processes
can cue the dependency graph to resolve the failure.

3.2 Abstraction Debugging

Now, we formulate verification refinement problem for DNNs
as a debugging problem. Our witness is that DNN verification
procedure can be viewed as a program, which is the sequence
of applied abstract transformers during DNN verification.
Specifically, given a triple { Pre} N{Post}, when an abstract
interpretation approach fails to prove it, a straight-line program
P = o ff; cees #71 can be automatically constructed.
Therefore, we can reduce an abstraction refinement problem to
a debugging problem, which we call ‘abstraction debugging’.
Similar with program debugging, we model S as a depen-
dency graph G = (S, F, E, entry,error), where S is a
set of abstractions appeared in the failed verification trace
T, I' is the a set of abstract transformers defined by the
abstract interpretation framework, F C (F'U S) x S denotes
the dependency relations, entry and error denote Pre and
—Post, respectively. One typical dependency graph is shown
in Figure 7.

Once having a dependency graph representing the failed verifi-
cation procedure, next we want to identify the root cause of the
verification failure. Note that, several abstract transformer may
contribute to the verification failure collectively, and therefore

fixing any of them cannot fully rescue the verification. Under
this condition, a practical and effective strategy is to start the
fixing from the earliest transformer that introduce unsafe states
into the analysis. Thus, we take that transformer as the root
cause of the failure. We formally define the root cause below.

Definition 2 (Unsafe Abstraction). Let {Pre}N{Post} be
the triple to verify and T = (ag,a1,- - ,a,) be a failed
abstraction trace. a; is unsafe if there exists x; € y(a;) such
that N;(x;) = Post.

Intuitively, an abstraction is unsafe as its concretization con-
tains some data points that can lead to the target property
violation. Note that, Pre here can be the input constraint for
any layer. For example, during the abstraction refinement, we
may be interested in a partial DNN such as N, then Pre
should be a #. Apparently, unsafe abstractions must be refined
before the target property can be verified. More precisely,
given a failed abstraction trace, we would like to identify the
‘critical abstraction’, an unsafe abstraction that indicts the root
cause of the failure.

Definition 3 (Critical Abstraction). Ler {Pre}N{Post} be
the problem to verify and T = (ag,a1,- - ,a,) be a failed
abstraction trace. a. is the critical abstraction if and only if:
(1) for all 0 <1 < ¢, we have a; is safe;

(2) for all c < i < n, we have a; is unsafe.

With above, we define the root cause transformer of the
verification failure now.

Definition 4 (Root Cause Transformer). Let { Pre} N{Post}
be the problem to verify, T = (ag,a1,--- ,a,) be a failed
abstraction trace, a. be the critical abstraction. We say fc#_ 1
is the root cause transformer of the failure.

Here, we take fc#_ 1 as the root cause of the failure, because
it is the earliest abstract transformer that introduces unsafe
states into the analysis. Moreover, ffi 1 should be the first
transformer to fix. Otherwise, if we fix latter transformers, the
fix can not be effective; if we fix earlier transformers, the fix
can be hard-to-interpret.

Up to now, we have formulated the abstraction refinement
problem for DNN verification. In particular, we have reduced
abstraction refinement to an abstraction debugging problem,
and reduced the root cause identification to the problem of
locating the critical abstraction. In the next section, we present
our approach to abstraction debugging.

4. AUTOMATIC ABSTRACTION DEBUGGING

Inspired by some techniques used in program debugging, we
devise an automatic abstraction debugging approach to refine
DNN verification. This section presents the detail.

4.1 Overall Algorithm

The overall algorithm of our approach is shown in Algo. 1.
It takes a verification problem, i.e. {a;}N;{Post}, and a

4If we consider a numerical abstraction a as a floating point constraint, then
set {z|z € a} and set {z|x € v(a)}, where x is a floating point number,
are equivalent. Therefore,we use y(a) and a interchangeably in this paper.
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Algorithm 1: Abstraction Debugging Algorithm

Algorithm 2: Abstraction Validation Algorithm

Inputs : problem P = {a;}N;{Post}, failed verification
trace T = (a;, - ,an).
Output: a set of sub-problems Pset.
begin,end < i,n
while begin < end do
mid < (begin + end + 1)/2
// check whether am;iq is safe or not.
safe + AbstractValidate(amid, Nmid, Post)
if safe then
‘ begin < mid + 1
else
L end < mid

¢ <+ mid
// now ag is the likely critical abstraction.
t,aset < AbstractFix(P, T, ¢)
// construct new problems from resulting abstractions.
Pset + [ ]
foreach abstraction a in aset do
| Pset.append({a}N,{Post})

return Pset
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failed abstraction trace 71" as input, and outputs several sub-
problems to further verify. Note that, when this procedure
is invoked for the first time, i.e., ¢ is equal to 0, we have
a; = a(Pre), N; = N. The main procedure works as follows.
First, it locates the likely critical abstraction through a binary
search, implemented by the loop from Line 2 to Line 8. During
each step of the search, it invokes procedure AbstractValidate
to check the safety of an abstraction. Once the likely critical
abstraction a; is identified, procedure AbstractFiz is adopted
to decide the right transformer to fix and perform the actual
split. Finally, the resulting sub-abstractions are encoded into
verification problems and the control returns to the original
verification process. Note that, although our approach is quite
general, some operations might need to be tuned for specific
abstract interpretation approach. In the following, we take
DeepZ for example to present how abstraction validation and
abstraction fixing are performed in our approach.

4.2 Abstraction Validation

In principle, deciding whether an abstraction is safe requires
precisely reasoning about (partial) DNNs, which is of great
challenge. Thus, instead of seeking for perfect methods for
abstraction validation, our goal here is to perform the valida-
tion in a cheap yet effective way.

The basic idea is to sample data points within the region
specified by the abstraction, i.e. y(a), and check whether any
of them leads to property violation. Note that trivial sampling
based on the value range is ineffective since i) an abstraction
usually specifies a geometrically complicated region where
different dimensions may have some dependency; and ii) a
large number of valid samples is needed in order to build the

Inputs : a;, partial DNN N,, Post.

Configs: optimization parameters: u1, ug, step_size

Output: True, if a; is very likely a safe abstraction;
False, if a; is an unsafe abstraction.

Let Gen be the generation function of a;
while less than uq iterations do
Sample valid v* within the value range of v
while less than uq iterations do
x; « Gen(v*)
if N;(z;) [~ Post then
// counterexample found.
if 7 = 0 then
// counterexample exists at input layer.
L report ‘Failed’ with z; and exit
return False

OLoss(z;,N;,Post)  9G
grad < o o S (v*)

// update the value of v* and do the projection.
v*  v* — step_size X sgn(grad)
Clip v* to fit the value range for v

return 7rue

confidence for an abstraction. Therefore, we decide to sample
data points as follows.

First, our method samples seed data points within the abstrac-
tion. Our observation is, elements in widely-used numerical
abstract domains (powersets are not considered here) can often
be represented using generation functions over some meta-
variables. For example, in the zonotope abstract domain, we
can define a function as Gen(v) = >, vk X g + go, wWhere
vy, are the meta-variables (the so-called symbolic variables in
the literature). In this case, any data point z € 7(a) can be
reached through Gen(v*) where v* is a concrete valuation of
v. Since meta-variables are usually constrained within a high
dimensional box that is much more regular than the resulting
abstraction, we can get valid x in two steps: first sample valid
data point v*, and then compute x through Gen.

Then, our method searches for counterexamples through push-
ing seed data points towards the unsafe zone. Inspired by
adversarial generation techniques [30], we formulate an op-
timisation problem and leverage the gradient information to
search the points. The idea is to devise a loss function to
measure how far the current sample is to violate the target
property, and drive the current sample towards the unsafe zone
through decreasing the loss value.

We show the detail in Algo. 2. The loop from line 2 to line 12
allows us to search from multiple random seeds until a timeout
occurs. At line 3, we generate a random seed v* and compute
the data point x; through function Gen. The loop from line 4
to line 12 then navigates through the space of z; iteratively.
Here we adopt the projected gradient descent (PGD) [31], a
standard method for large-scale constrained optimization, to
optimize the loss function. At line 6 we check whether z;



leads to property violation. If yes, then a; must be unsafe and
we further check whether a; is the abstraction for the input
layer. Otherwise, we follow the gradient to search through the
space, i.e. we modify x; according to a loss function at line 11.
Before closing this part, we present how the loss function is
constructed. For the local robustness analysis, a simple loss
function can be defined as:

Loss(x;, N;, Post)

—

= Ni(zi)e —maz(Ni(z:);) 2
J#k
where k is the desired class specified by Post. Apparently,
decreasing the value of the loss function navigates the input z;
towards the property-violating zone (i.e. unsafe zone). Once
a negative loss value is reached, the optimization procedure
identifies a counterexample for the original problem. It should
be noted such methods are usually incomplete; it may fail to
find out counterexamples which indeed exist.

4.3 Abstraction Fixing

The primary means of the abstraction fixing in this work is
through splitting. Although it is not hard to split an abstraction,
choosing which abstraction to split and how to split it is critical
to the effectiveness of our fixing procedure.

As we know, the aﬁne# transformer in DeepZ is exact, while
the ReLU?# transformer can be inexact. A ReLU? trans-
formation over-approximates the behavior of ReLU function
when any dimension of its input abstraction’s value range
spans across zero, and thus it can introduce unsafe states
into the analysis. Under this condition, the abstraction must
be refinement in order to eliminate the unsafe states. While
performing a complex cross-dimensional split is possible and
can be more effective, SURGEON takes one simple yet easy-
to-interpret choice, splitting the input abstraction on that di-
mension at point 0. More formally, if we use zeroSplit(doy)(a)

to denote the action that splits abstraction a on the dimension
dp at 0, then we can a fixing operator for DeepZ as follows

§(ReLU#) = ReLU? o zeroSplit(do)

where d is any dimension on which the input abstraction’s
value range spans across 0.

Sometimes splitting an abstraction once cannot eliminate all
the unsafe states introduced by the ReLU? transformer, and
thus we need split an abstraction multiple times (on different
dimensions). For this reason, we further define

zeroSplit(do, - - ,d;) = zeroSplit(d;)ozeroSplit(dy, - -+ ,d;—1)

where p > 0 and dy, - - ,d, are distinct dimensions of the
input abstraction. So we have a series of fixing operators

§(ReLU* ozeroSplit(do, - - - ,di—1)) = ReLU ozeroSplit(do, - -

At this point, we are ready to establish the fixing operator set
used in SURGEON:

A = {§(ReLU#), §(ReLU* o zeroSplit(do)
5(R6LU# o zeroSplit(dy, dt),

§(ReLU# o zeroSplit(dgy',--- ,d;")}.
where p >0, {do} C {0,1,---,n—1},

{do,d1} € {0,1,--- ,n -1},

{dg',---,d}"} € {0,1,--- ,;n—1},

Algorithm 3: Abstraction Fixing Algorithm

: problem P = {a;}N;{Post}, failed trace T,
index of the likely critical abstraction ¢.
maximum number of splits per fix k.

fixing layer 7, abstractions aset.

Inputs

Configs:
Output:

// locate the likely root cause transformer f7* according to ¢.
rT<c—1
dims < DimensionFilter(a)
// find top k dimensions with largest influences, and split.
kdims < InfluenceRank(az, dims, k)
if kims is empty then

L report ‘UNKNOWN’ and exit

aset < zeroSplit(kdims)(ar)

7 return r, aset

Based on the above discussion, now let us introduce the
abstraction fixing algorithm in our approach, as shown in
Algo. 3. Given ¢ is the index of likely critical abstraction, it
calculates the likely root cause transformer f; and then filters
out some dimensions of a; (i.e. input abstraction to ff ) where
no over-approximation is introduced. Function InfluenceRank
is employed to rank the left dimensions in which the top &
are selected for splitting. Finally, after zeroSplit perform the
actual splitting on a;, the algorithm returns.

Lastly, we discuss how InfluenceAnalysis works. Its goal is
to rank different dimensions of an abstraction based on their
impacts on the output layer of the DNN. SURGEON borrows
the idea from ReluVal [20] and uses the interval gradient as
an indicator of the impacts, where a larger interval gradient
value suggests that dimension of the abstraction has a greater
influence towards changing the output, and thus splitting on it
would improve the overall analysis precision more effectively.

4.4 Remedy to Imperfect Validation

Up to here, we have presented core techniques for automatic
abstraction debugging. It should be noted that the effectiveness
of our approach can be threatened by the imperfectness of
our abstraction validating procedure. Specifically, SURGEON
validates an abstraction through optimization methods, which
are cost-effective yet incomplete, i.e. it may report an unsafe

) ’diﬁbstraction safe, in which case, SURGEON fails to identify

the actual root causes. Worse still, the failure cannot be fully
resolved with the later refinement decisions.

To mitigate this problem, we make SURGEON configurable,
allowing it to recover from diagnosis failure to certain degrees.
In specific, once identified the likely root cause, SURGEON
may refine the domain based on some earlier abstraction,
considering the abstraction validating procedure may fail to
detect the actual root causes. We should note this remedy could
decrease the interpretability of our approach, as it may perform
refinement action based on safe abstractions.



5. EVALUATION

To evaluate our proposal, we have conducted an extensive set
of experiments to answer the following research questions.

RQ1:
RQ2:

RQ3:
RQ4:
RQ5:

Can SURGEON improve the verification precision of DeepZ?
How does SURGEON perform against abstraction refinement
techniques in analysis precision?

Is SURGEON more effective than refinement techniques?
Does SURGEON scale to large DNNs?

Does the remedy help improve the analysis precision?

5.1 Implementation

As a proof-of-concept demonstration, we have implemented
SURGEON in a prototype tool based on DeepZ. The main
procedure is written in Python and it leverages ELINA li-
brary [32], [33] to perform the underlying abstraction analysis.
Noted that some modification to ELINA is needed in order to
support partitioning operation on numerical domain elements.

5.2 Experimental Setup

a) DNN Models.

We have trained 16 fully connected DNN models on the
MNIST dataset [34] , which consists of 60000 grayscale
images of handwritten digits (0 ~ 9), each with 28 x 28
pixels. The DNNs have sizes {3,5,7,9} x {5,10,50,100}
where N x M means there are N hidden layers and each
layer has M neurons. We show more detail in Table I, where
the data under ‘overall’ columns denote the overall precision
over the testing dataset, and the data under ‘first/00’ columns
denote how many inputs among the first 100 inputs from the
training dataset are correctly classified by the DNN.

M=5 M=10 M=50 M=100
overall firstl00 overall firstl00 overall firstl00 overall first100
N=3 0.8304 90 0.9359 96 0.9708 99 0.9759 98
N=5 0.8675 87 0.9247 91 0.9709 99 0.9747 100
N=7 0.7777 79 0.9333 99 0.9703 99 0.9765 929
N=9 0.7351 74 0.915 92 0.9694 99 0.9788 100

Table I: DNN models used in our evaluation.

b) Robustness Properties.

As [18], we took the first 100 inputs from the MNIST training
dataset for L,,-norm [28] distance based robustness analysis.
Unlike previous literature [17], [18] where the perturbation
e is fixed, i.e. € € {0.005,0.01,0.015,0.02,0.025,0.03}, we
examine the exact verifiable robustness (denoted as EVR in
the following) for each method with respect to each DNN and
each input during the evaluation. That is, we gradually increase
the perturbation e from 0.001 up to 1.0 with step size 0.001,
and record the largest perturbation e value that can be verified
by the corresponding verification method as its EVR. With this
fine-grained adjustment, the capacity of each method can be
precisely assessed and fairly compared.

c) Experimental Configuration.

All experiments are performed on a Ubuntu 16.04 machine
with a I-core CPU and a 8GB memory. By default we take
2 minutes as timeout and 256 as the maximum number of
fixes for each verification problem. We set the optimization

parameters as u; = 8, ug = 400, step_size = 0.005, and the
maximum number of splits per fix as k = 1.

5.3 Precision Improvement over DeepZ (RQ1)

The primary goal of our approach is to improve the ver-

ification precision of existing approaches, and this research
question aims at access this goal empirically. In particular, we
would like to examine the EVR for each input and each model,
and compare whether the EVR of SURGEON outperform the
baseline, i.e. the EVR of DeepZ. Note that, we should exclude
the inputs that are mis-classified by a given DNN.
The result is shown in Table Ila. In the table, N and M denote
the DNN structure, the data in the columns titled ‘# show the
number of inputs that are correctly classified by a specific
DNN, and the data under in the columns titled ‘ * show the
number of inputs whose EVR get improved by SURGEON. We
can see from the table that, SURGEON can indeed improve the
verification precision of DeepZ, and the ratio of the improved
inputs can be up to 72% (i.e. network 5 x 10).

5.4 Precision v.s. Other Refinement Techniques (RQ2)

This research question focuses on the precision comparison
between our approach and existing refinement techniques.
Specifically, we consider DeepZ with two refinement tech-
niques based on input feature bisection, wherein one chooses
input features randomly, denoted as DeepZ”, and the other
chooses them based on interval gradients, denoted as DeepZ9.
We ran SURGEON, DeepZ”™ and DeepZ? on all the DNNs and
all the inputs, and collected the EVR for each of them.

The statistical result is shown in Table IIb and Table Ilc, where
the former shows the comparison result between SURGEON
and DeepZ”, and the latter shows the comparison result
between SURGEON and DeepZ9. The data in the columns titled

‘N, show the number of inputs whose EVR on SURGEON
are smaller than the compared technique, while the other
columns hold the same meaning as before. For all the DNNs
except network 7 x 100, SURGEON outperforms the compared
refinement techniques in term of the verification precision. In
fact, SURGEON works extremely well for DNNs in small sizes.

5.5 Effectiveness v.s. Other Refinement Techniques (RQ3)

This research question cares about the effectiveness of our
approach. In essence, we should compare the refinement steps
that are taken by different refinement techniques, in order to
achieve the same precision improvement. However, given a
DNN, identifying inputs whose EVR can be improved by all
the refinement techniques is tedious. Thus we evaluate the
effectiveness from a different angle. We fix the maximum
refinement steps, and compare the EVR for different analysis
methods, with respect to all the network and all the inputs. For
example, given a DNN and an input z, assuming we set the
maximum refinement step to be 10, then method A is more
effective than method B if the EVR of = by A is larger than the
EVR by B. In particular, we took 4, 8,16, 32, as the maximum
refinements for each verification problem, and compared the
EVR of SURGEON with DeepZ"™ and DeepZ9.



SURGEON v.s. DeepZ

SURGEON v.s. DeepZ”

SURGEON v.s. DeepZ?

M=5 M=10 M=50 M=100 M=5 M=10 M=50 M=100 M=5 M=10 M=50 M=100

# % 2 % 2 # AR VAN A AR AR VAN A AR

N=3 |90 35 96 59 99 62 98 47 N=3 |35 0 58 0 62 0 42 0 N=3 |34 3 5 1 57 3 41 0
N=5|87 35 91 66 99 44 100 8 N=5135 0 64 1 40 1 6 0 N=528 2 64 1 35 1 5 2
N=7{79 10 99 45 99 17 99 5 N=7 |10 O 41 1 14 0 1 3 N=7]9 3 36 2 8 0 2 7
N=9 | 74 19 92 37 99 11 100 2 N=9 18 1 3 1 9 2 4 1 N=9 |15 3 34 3 6 4 3 2

(@) (b) ©
Table II: Precision comparison between SURGEON with DeepZ, DeepZ” and DeepZ9.
Max Refinement = 8 Max Refinement = 16 Max Refinement = 32

M=5 M=10 M=50 M=100 M=5 M=10 M=50 M=100 M=5 M=10 M=50 M=100

SN AN SN SN SN AN SN SN AR VAN A A

N=3 |3 0 58 0 5 0 33 0 N=3 |3 0 58 0 61 0 3 0 N=3 |36 0 58 0 62 0 40 O
N=5|3 0 65 1 32 0 3 0 N=5]36 0 66 1 36 1 4 0 N=5|35 0 65 1 40 1 4 0
N=7|9 0 42 0 8 0 2 3 N=7 |10 0 43 0 12 0 2 4 N=7 |10 0 4 0 11 0 3 4
N=9 |19 0 3 0 7 1 2 2 N=9 |18 O 35 0 9 1 2 2 N=9 |18 1 35 1 8§ 2 2 2

Table III: Precision comparison between SURGEON with DeepZ”, given the maximum number of refinement is fixed.

Max Refinement = 8

Max Refinement = 16

Max Refinement = 32

M=5  M=10 M=50 M=100 M=5  M=10 M=50 M=100 M=5  M=10 M=50 M=100

SN SN S N SN SN SN S N SN SN SN S N SN
N=3[35 0 57 0 53 0 3L 0 N=3[35 0 58 0 58 0 34 0 N=3[35 0 58 0 57 2 37 0
N=5133 0 64 1 30 1 2 1 N=5|34 0 65 1 3 1 3 3 N=5133 2 64 1 33 1 3 4
N=7|9 0 3 0 6 0 0 7 N=7 |10 1 38 1 7 0 1 7 N=7 |10 1 3 1 8 0 1 9
N=9 |18 0 32 1 5 3 2 2 N=9 |17 1 31 1 5 5 2 4 N=9 |16 1 32 2 4 5 3 5

Table IV: Precision comparison between SURGEON with DeepZ9, given the maximum number of refinement is fixed.

The result is showed in Table III and Table IV. It shows that
SURGEON is much more effective than DeepZ” in verifying
small DNNs, where M = {5,10,50}. When M = 100, they
are still competitive. Such saying holds in comparing SUR-
GEON with DeepZ9. However, our approach is less effective
than DeepZ9 for larger DNNs, i.e. M = 100. We suspect this
is due to the imperfectness of abstraction validation procedure.

5.6 Scalability (RQ4)

Here, we take the data collected for the above questions,
i.e. from Table II to Table V, to study the scalability of our
approach. In particular, we compare the precision improvement
of SURGEON over other approaches among different models.
Usually, SURGEON performs much better than other methods
on small DNN models. With the DNN gets larger, the ex-
perimental result shows the precision gain of SURGEON is
indistinctive. (The number of inputs whose EVR get proved
drops from more than 30 to 1 or 2.)

This is because, abstraction validation and neuron selection is
quite challenging for large DNNs. With more neurons in each
hidden layer, the impact of each neuron to the output layer
might be subtle and dozens of neurons might need to be refined
in order to fix the failure. All these suggest that it is non-
trivial for our approach to scale to large DNNs. Indeed, further
research is demanding in order to get an effective, interpretable
and scalable approach for abstraction refinement.

5.7 Impact of the Remedy on the Analysis Precision (RQ5)

Now we assess whether the remedy improve the refinement,
i.e. whether choosing an earlier abstraction to guide the
refinement could contribute to the precision of the verification.
We configure SURGEON with different 3, which measures how
far the chose abstraction is from the identified root cause.
For example, when 8 = 0, we just choose the identified
root cause abstraction to guide the fixing; and when g = 1,
we choose the abstraction right before the identified root
cause, i.e. a,_1, to guide the fixing. In the following, we
run SURGEON with different 8 values (i.e. 5 = {0,1,2,3}),
denoted as S—SURGEON, where 8 = 0 denotes the baseline,
and compared the number of inputs whose EVRs get improved.

\ M=5 \ M=10

| B=0 B=1 p=2 B=3|p=0 p=1 p=2 p=3
N=3 35 +1 +1 - 59 +8  +10 -
N=5 35 +4  +10 +12 66 +11 +14 +15
N=7 10 +3 +3 +3 45 +13  +14  +17
N= 19 +1 +1 +2 37 +10  +17 +20

The results are shown in Table V, where each column under
‘8 = {1,2,3}" shows the number of inputs whose EVR get
improved by S—SURGEON, compared with baseline DeepZ,
i.e. the columns under ‘3 = 0’. It shows that, as (3 increases,
B—SURGEON can verify more inputs with higher EVR val-
ues. Given the strength of the current validation technique,
choosing earlier abstraction to guide refinement can indeed



\ M=50 \ M=100

| B=0 p=1 p=2 p=3|p=0 p=1 p=2 p=3
N=3 62 410 +22 - 47 +5  +17 -
N=5 44 +3 +11 425 8 +0  +16 +24
N=7 17 +0 +2 +5 5 +1 +6  +13
N=9 11 +1 +4 +8 2 +0 +2 +2

Table V: Improvement of 5—SURGEON over DeepZ.

help improve the refinement precision. In specific, when g is
small, it is very likely for our validation technique to miss
the critical abstraction. Consequently, SURGEON may attempt
to refine the abstract domain based on a late abstraction, and
thus the verification procedure cannot be corrected. However,
through increasing the value of 3, we are given more chances
to jump backwards and thus the corresponding refinement are
more likely to resolve the failure. To the extreme case, when
we ignore the critical abstraction and just refine the abstract
domain based on the input feature, the abstract domain can
grow too fine grained, possibly blowing up to a great many of
tiny intervals, or even the whole concrete domain.

6. DISCUSSION

To consummate this work, we sent the early draft of this work
to several researchers for suggestions. We thank their feedback
and we address their concerns in this section.

6.1 Root Causes

The first concern about this work is, why we choose the
abstract transformer right before the first unsafe abstraction
as the root cause transformer. Choosing an earlier transformer
may also fix the failure. In fact, our method can be viewed as
a ‘must analysis’ concerning the verification failure, ensuring
refinements are made strictly when required. In contrast,
adopting a ’may analysis’ could compromise the clarity and
interpretability of our refinement process.”

6.2 Generalization

We take DeepZ as example to illustrate and evaluate our
approach throughout this paper, and do not discuss about much
about the generalization issue. One researcher asks whether
our approach is applicable to other domains.

Our technique trivially works for non-relational domains, such
as interval, and can be extended to support relational domains.
For example, our approach can also work for DeepPoly, as we
can represent DeepPoly elements in generation forms, which
are more complex though. Taking the 2-D space as example,
any convex polygon in the space can be partitioned into trian-
gles, and each triangle can be rewritten using the generation
form. In general, most useful convex abstract elements can
adopt this trick and thus our approach works.

However, adopting it to other domains still require one to
have a good understanding about the abstract domain and
transformers used in the target approach, both are tricky and
error-prone to manipulate. In the future, we plan to develop

automatic techniques to construct these essential elements,
thus facilitating the adoption of our approach.

6.3 Scalability

One major limitation of our approach is its constrained scala-
bility. This challenge primarily emanates from the abstraction
validation technique. While it might be challenging to fully ad-
dress this issue, several strategies can be explored to alleviate
its impact. For example, we may employ multiple threading
techniques or even leverage GPU hardware. Another possible
way is to reuse some validation results. For example, if we
have validated a;, then when we validate a2, we can skip the
state that can be reached from a;.

7. RELATED WORK

In this section, we survey the most related research.

7.1 DNN Verification

Existing DNN verification approaches can be grouped into two
categories: exact methods and approximation methods. Exact
methods consider the precise semantics of DNNs. For instance,
[15] adopts mixed integer linear programming (MILP) to
tackle the verification problem, while [13], [14] tackle the
problem through SMT solving. These methods are sound and
complete, but usually are costly and limited in scalability.
In comparison, approximation methods choose to sacrifice
precision for efficiency and scalability. For instance, [35], [36]
adopt linear approximation, whereas the approaches in [16],
[17], [18] leverage numerical abstract domains to reason about
DNNs. Through proper over-approximation, these methods
usually could handle larger networks than exact methods.

7.2 Abstraction Refinement for DNN Verification

A variety of research has proposed abstraction refinement tech-
niques for neural network verification. Among them, several
works split abstraction through manual crafted strategies, such
as ReluVal [20], which bisects the input space with the guid-
ance of symbolic interval gradients, and Neurify [21], which
further extends the work by refining on external neurons. Later,
these strategies can be gained through a data-driven learning.
[22] leverages Bayesian optimization to train the domain strat-
egy and split strategy and then apply them to facilitate DNN
verification. [23] adopts the GNN (Graph Neural Network)
to learn more sophisticated refinement strategies. Our work
belongs to this line of research, but it is of debugging nature,
which is more interpretable and effective.

7.3 Counterexample Guided Abstraction Refinement

CEGAR [37] is a generic technique that iteratively constructs
and refines abstraction until a proper precision is reached. In
the last twenty years, CEGAR has been applied to verify a
variety of software systems [38], [39], [40], [41], [42] and
hardware systems [37], [43]. Here we briefly reviews CEGAR
research in program verification.

In program verification, a line of research such as [44], [45],
[37], [46], [47], [48], [49] have explored to adopt CEGAR to
facilitate verification, where the core problems are to decide



when and how to apply the refinement. In general, our work
is closely related to CEGAR-based approaches, as the whole
refinement procedure is driven by counterexamples. However,
they are also very different. In addition to the different
application domains, the primary usage of the counterexample
in our approach is to locate the root cause site of the failure
and the refinement is based on the identified root cause site.

8. CONCLUSION

In this paper, we leverage the ‘interpretable’ nature of debug-
ging processes and propose SURGEON, an effective and in-
terpretable debugging approach for refining DNN verification.
We have implemented a prototype and evaluated our approach
on a set of local robustness analysis problem. The results show
SURGEON not only can improve the analysis precision and is
more effective than existing refinement techniques.
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